If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

Bancroft Method: Difference between revisions

From Navipedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
|Logo=gAGE
|Logo=gAGE
}}
}}
The Bancroft method allows to obtain a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.
The Bancroft method allows to obtain a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.


==Raising and resolution ==
==Raising and resolution==


<math> PR^j</math>
Let <math>PR^j</math> the prefit-residual of satellite-<math>j</math>, computed from equation (1)


<math>
R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j
\qquad \mbox{(1)}</math>


<math> R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j </math>


after removing all model terms  not needing the a priory knowledge of the receiver position:<ref group=“footnotes”>The tropospheric and ionospheric terms,  <math>T^j</math> and <math>\hat{\alpha} \,I^j</math>, can not be included, because the need to consider the satellite-receiver ray. Off course, after an initial computation of the receiver coordinates, the method could be iterated using the ionospheric and tropospheric corrections to improve the solution.</ref>


<math> PR^j\equiv R^j +c\,\delta t^j-TGD^j</math>
<math>
PR^j\equiv R^j +c\,\delta t^j-TGD^j
\qquad \mbox{(2)}</math>




<math> R^j-D^j\simeq \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c\,\delta t</math>
Thence, neglecting the tropospheric and ionospheric terms, as well as the multipath and receiver noise, the equation (3)
<math> j=1,2,...,n~~~~ (n \geq 4)</math>


<math> PR^j = \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c \, \delta t</math>
<math>
\begin{array}{r}
R^j-D^j\simeq \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c\,\delta t\\[0.3cm]
j=1,2,...,n~~~~ (n \geq 4)\\
\end{array}
\qquad \mbox{(3)}</math>


<math> \left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^j} \;  \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0</math>


<math> {r}=[x,y,z]^T</math>
can be written as:


<math>\left \langle{a},{b}\right \rangle={a}^{t} \; {M} \; {'b}=
<math>
PR^j = \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c \, \delta t
\qquad \mbox{(4)}</math>
 
 
Developing the previous equation (4), it follows:
 
<math>\left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^j} \;  \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0</math>
 
 
Then, calling <math>{\mathbf r}=[x,y,z]^T</math> and considering the inner product of
Lorentz <ref group=“footnotes”>
<math>
\left \langle{\mathbf a},{\mathbf b}\right \rangle={\mathbf a}^{t} \; {\mathbf M} \; {\mathbf b}=
\left[
\left[
\begin{array}{c}
\begin{array}{c}
Line 51: Line 71:
b_4
b_4
\end{array}
\end{array}
\right] </math>
\right]
 
</math>
</ref>
the previous equation can be expressed in a more compact way as:


<math>
<math>\frac{1}{2} \left  \langle
\frac{1}{2} \left  \langle
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}^j\\
{\mathbf r}^j\\
PR^j\\
PR^j\\
\end{array}
\end{array}
Line 64: Line 85:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}^j\\
{\mathbf r}^j\\
PR^j\\
PR^j\\
\end{array}
\end{array}
Line 73: Line 94:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}^j\\
{\mathbf r}^j\\
PR^j\\
PR^j\\
\end{array}
\end{array}
Line 79: Line 100:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
Line 88: Line 109:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
Line 94: Line 115:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
Line 102: Line 123:
</math>
</math>


<math> PR^j</math>
The former equation can be raised for every satellite (or prefit-residual <math>PR^j</math>).
 


<math>  
If four measurements are available, thence, the following matrix can be written, containing all the available information on satellite coordinates and
{B}=
pseudoranges (every row corresponds to a satellite):
 
<math>
{\mathbf B}=
\left(
\left(
\begin{array}{cccc}
\begin{array}{cccc}
Line 114: Line 139:
\end{array}
\end{array}
\right)
\right)
</math>
\qquad \mbox{(5)}</math>
 
 
Then, calling:


<math>
<math>\Lambda=
\Lambda=
\frac{1}{2}
\frac{1}{2}
  \left  \langle
  \left  \langle
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
Line 128: Line 155:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
Line 135: Line 162:
\; ,
\; ,
\;
\;
{1}=
{\mathbf 1}=
\left[
\left[
\begin{array}{c}
\begin{array}{c}
Line 146: Line 173:
\; ,
\; ,
\;
\;
{a}=
{\mathbf a}=
\left[
\left[
\begin{array}{c}
\begin{array}{c}
Line 164: Line 191:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}^j\\
{\mathbf r}^j\\
PR^j\\
PR^j\\
\end{array}
\end{array}
Line 170: Line 197:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}^j\\
{\mathbf r}^j\\
PR^j\\
PR^j\\
\end{array}
\end{array}
Line 177: Line 204:
</math>
</math>


<math>
 
{a} -{B}\,{M} \left[
The four equations for pseudorange can be expressed as:
 
<math>{\mathbf a} -{\mathbf B}\,{\mathbf M} \left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
\right]
\right]
+\Lambda \; {1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\;
+\Lambda \; {\mathbf 1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\;
{M}=\left(
{\mathbf M}=\left(
\begin{array}{cccc}
\begin{array}{cccc}
1&0&0&0\\
1&0&0&0\\
Line 194: Line 223:
\right)
\right)
</math>
</math>
from where:


<math>
<math>
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
\right]
\right]
={M} {B}^{-1} (\Lambda \; {1} + {a})
={\mathbf M} {\mathbf B}^{-1} (\Lambda \; {\mathbf 1} + {\mathbf a})
</math>
\qquad \mbox{(6)}</math>
 
 
<math>
\langle {M}{g},{M}{h} \rangle=\langle {g},{h} \rangle
</math>




Then, taking into account the following equality <math>\langle {\mathbf M}{\mathbf g},{\mathbf M}{\mathbf h} \rangle=\langle {\mathbf g},{\mathbf h} \rangle</math>, and
that
<math>
<math>
\Lambda=
\Lambda=
\frac{1}{2}
\frac{1}{2}
\left  \langle
\left  \langle
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
Line 223: Line 252:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
\right]
\right]
\right \rangle
\right \rangle
</math>,  from the former expression, one obtains:
<math>
\left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf 1} \right \rangle \Lambda^2+ 2\left [  \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf a} \right \rangle -1 \right ] \Lambda +  \left \langle {\mathbf B}^{-1} {\mathbf a}, {\mathbf B}^{-1} {\mathbf a} \right \rangle =0
\qquad \mbox{(7)}</math>
The previous expression is a quadratic equation in <math>\Lambda</math> (note that matrix <math>{\mathbf B}</math> and the vector {\mathbf a} are also known) and provides two solutions, one of them is the searched solution
<math>
\left[
\begin{array}{c}
{\mathbf r}\\
c\,\delta t\\
\end{array}
\right]</math>.
The other solution is far from the earth surface.
==Generalisation to the case of <math>n</math>-measurements:==
If more than four observations are available, the matrix <math>{\mathbf B}</math> is not square. However, multiplying by <math>{\mathbf B}^T</math>, one obtains (Least Squares solution):
<math>{\mathbf B}^T{\mathbf a} -{\mathbf B}^T {\mathbf B}\,{\mathbf M} \left[
\begin{array}{c}
{\mathbf r}\\
c\,\delta t\\
\end{array}
\right]
+\Lambda \; {\mathbf B}^T {\mathbf 1}=0
</math>
</math>
where:


<math>
<math>
\left \langle {B}^{-1} {1}, {B}^{-1} {1} \right \rangle \Lambda^2+ 2\left [  \left \langle {B}^{-1} {1}, {B}^{-1} {a} \right \rangle -1 \right ] \Lambda + \left \langle {B}^{-1} {a}, {B}^{-1} {a} \right \rangle =0
\left[
\begin{array}{c}
{\mathbf r}\\
c\,\delta t\\
\end{array}
\right]
={\mathbf M} ({\mathbf B}^T {\mathbf B})^{-1}{\mathbf B}^T(\Lambda \; {\mathbf 1} + {\mathbf a})
</math>
 
 
and then:
 
<math>
\begin{array}{r}
\left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1} \right \rangle \Lambda^2+ 2\left [  \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle -1 \right ] \Lambda +\\[0.3cm]
+ \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle =0
\end{array}
</math>
</math>
==Notes==
<references group="footnotes"/ >


[[Category:Fundamentals]]
[[Category:Fundamentals]]

Revision as of 08:55, 31 March 2011


FundamentalsFundamentals
Title Bancroft Method
Author(s) J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain.
Level Advanced
Year of Publication 2011
Logo gAGE.png

The Bancroft method allows to obtain a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.

Raising and resolution

Let [math]\displaystyle{ PR^j }[/math] the prefit-residual of satellite-[math]\displaystyle{ j }[/math], computed from equation (1)

[math]\displaystyle{ R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j \qquad \mbox{(1)} }[/math]


after removing all model terms not needing the a priory knowledge of the receiver position:[“footnotes” 1]

[math]\displaystyle{ PR^j\equiv R^j +c\,\delta t^j-TGD^j \qquad \mbox{(2)} }[/math]


Thence, neglecting the tropospheric and ionospheric terms, as well as the multipath and receiver noise, the equation (3)

[math]\displaystyle{ \begin{array}{r} R^j-D^j\simeq \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c\,\delta t\\[0.3cm] j=1,2,...,n~~~~ (n \geq 4)\\ \end{array} \qquad \mbox{(3)} }[/math]


can be written as:

[math]\displaystyle{ PR^j = \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c \, \delta t \qquad \mbox{(4)} }[/math]


Developing the previous equation (4), it follows:

[math]\displaystyle{ \left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^j} \; \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0 }[/math]


Then, calling [math]\displaystyle{ {\mathbf r}=[x,y,z]^T }[/math] and considering the inner product of Lorentz [“footnotes” 2] the previous equation can be expressed in a more compact way as:

[math]\displaystyle{ \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right] \right \rangle - \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle + \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle =0 }[/math]

The former equation can be raised for every satellite (or prefit-residual [math]\displaystyle{ PR^j }[/math]).


If four measurements are available, thence, the following matrix can be written, containing all the available information on satellite coordinates and pseudoranges (every row corresponds to a satellite):

[math]\displaystyle{ {\mathbf B}= \left( \begin{array}{cccc} x^1&y^1&z^1&PR^1\\ x^2&y^2&z^2&PR^2\\ x^3&y^3&z^3&PR^3\\ x^4&y^4&z^4&PR^4\\ \end{array} \right) \qquad \mbox{(5)} }[/math]


Then, calling:

[math]\displaystyle{ \Lambda= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle \; , \; {\mathbf 1}= \left[ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ \end{array} \right] \; , \; {\mathbf a}= \left[ \begin{array}{c} a_1\\ a_2\\ a_3\\ a_4\\ \end{array} \right] \; \mbox{being} \; \; a_j= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right] \right \rangle }[/math]


The four equations for pseudorange can be expressed as:

[math]\displaystyle{ {\mathbf a} -{\mathbf B}\,{\mathbf M} \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] +\Lambda \; {\mathbf 1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\; {\mathbf M}=\left( \begin{array}{cccc} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&-1\\ \end{array} \right) }[/math]


from where:

[math]\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] ={\mathbf M} {\mathbf B}^{-1} (\Lambda \; {\mathbf 1} + {\mathbf a}) \qquad \mbox{(6)} }[/math]


Then, taking into account the following equality [math]\displaystyle{ \langle {\mathbf M}{\mathbf g},{\mathbf M}{\mathbf h} \rangle=\langle {\mathbf g},{\mathbf h} \rangle }[/math], and that [math]\displaystyle{ \Lambda= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle }[/math], from the former expression, one obtains:

[math]\displaystyle{ \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf a} \right \rangle -1 \right ] \Lambda + \left \langle {\mathbf B}^{-1} {\mathbf a}, {\mathbf B}^{-1} {\mathbf a} \right \rangle =0 \qquad \mbox{(7)} }[/math]


The previous expression is a quadratic equation in [math]\displaystyle{ \Lambda }[/math] (note that matrix [math]\displaystyle{ {\mathbf B} }[/math] and the vector {\mathbf a} are also known) and provides two solutions, one of them is the searched solution [math]\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] }[/math]. The other solution is far from the earth surface.


Generalisation to the case of [math]\displaystyle{ n }[/math]-measurements:

If more than four observations are available, the matrix [math]\displaystyle{ {\mathbf B} }[/math] is not square. However, multiplying by [math]\displaystyle{ {\mathbf B}^T }[/math], one obtains (Least Squares solution):

[math]\displaystyle{ {\mathbf B}^T{\mathbf a} -{\mathbf B}^T {\mathbf B}\,{\mathbf M} \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] +\Lambda \; {\mathbf B}^T {\mathbf 1}=0 }[/math]


where:

[math]\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] ={\mathbf M} ({\mathbf B}^T {\mathbf B})^{-1}{\mathbf B}^T(\Lambda \; {\mathbf 1} + {\mathbf a}) }[/math]


and then:

[math]\displaystyle{ \begin{array}{r} \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle -1 \right ] \Lambda +\\[0.3cm] + \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle =0 \end{array} }[/math]

Notes

<references group="footnotes"/ >
Cite error: <ref> tags exist for a group named "“footnotes”", but no corresponding <references group="“footnotes”"/> tag was found