If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

# Bancroft Method

Fundamentals
Title Bancroft Method
Author(s) J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
Year of Publication 2011

The Bancroft method allows obtaining a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.

## Raising and resolution

Let $\displaystyle{ PR^j }$ the prefit-residual of satellite-$\displaystyle{ j }$, computed from equation (1)

$\displaystyle{ R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j \qquad \mbox{(1)} }$

after removing all model terms not needing the a priory knowledge of the receiver position:[footnotes 1]

$\displaystyle{ PR^j\equiv R^j +c\,\delta t^j-TGD^j \qquad \mbox{(2)} }$

Thence, neglecting the tropospheric and ionospheric terms, as well as the multipath and receiver noise, the equation (3)

$\displaystyle{ \begin{array}{r} R^j-D^j\simeq \sqrt{(x^j-x)^2+(y^j-y)^2+(z^j-z)^2}+c\,\delta t\\[0.3cm] j=1,2,...,n~~~~ (n \geq 4)\\ \end{array} \qquad \mbox{(3)} }$

can be written as:

$\displaystyle{ PR^j = \sqrt{(x^j-x)^2+(y^j-y)^2+(z^j-z)^2}+c \, \delta t \qquad \mbox{(4)} }$

Developing the previous equation (4), it follows:

$\displaystyle{ \left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^jc\,\delta t} \; \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0 \qquad \mbox{(5)} }$

Then, calling $\displaystyle{ {\mathbf r}=[x,y,z]^T }$ and considering the inner product of Lorentz [footnotes 2] the previous equation (5) can be expressed in a more compact way as:

$\displaystyle{ \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right] \right \rangle - \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle + \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle =0 \qquad \mbox{(6)} }$

The former equation can be raised for every satellite (or prefit-residual $\displaystyle{ PR^j }$).

If four measurements are available, thence, the following matrix can be written, containing all the available information on satellite coordinates and pseudoranges (every row corresponds to a satellite):

$\displaystyle{ {\mathbf B}= \left( \begin{array}{cccc} x^1&y^1&z^1&PR^1\\ x^2&y^2&z^2&PR^2\\ x^3&y^3&z^3&PR^3\\ x^4&y^4&z^4&PR^4\\ \end{array} \right) \qquad \mbox{(7)} }$

Then, calling:

$\displaystyle{ \Lambda= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle \; , \; {\mathbf 1}= \left[ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ \end{array} \right] \; , \; {\mathbf a}= \left[ \begin{array}{c} a_1\\ a_2\\ a_3\\ a_4\\ \end{array} \right] \; \mbox{being} \; \; a_j= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right] \right \rangle \qquad \mbox{(8)} }$

The four equations for pseudorange can be expressed as:

$\displaystyle{ {\mathbf a} -{\mathbf B}\,{\mathbf M} \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] +\Lambda \; {\mathbf 1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\; {\mathbf M}=\left( \begin{array}{cccc} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&-1\\ \end{array} \right) \qquad \mbox{(9)} }$

from where:

$\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] ={\mathbf M} {\mathbf B}^{-1} (\Lambda \; {\mathbf 1} + {\mathbf a}) \qquad \mbox{(10)} }$

Then, taking into account the following equality

$\displaystyle{ \langle {\mathbf M}{\mathbf g},{\mathbf M}{\mathbf h} \rangle=\langle {\mathbf g},{\mathbf h} \rangle \qquad \mbox{(11)} }$,

and that

$\displaystyle{ \Lambda= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle \qquad \mbox{(12)} }$,

from the former expression (10), one obtains:

$\displaystyle{ \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf a} \right \rangle -1 \right ] \Lambda + \left \langle {\mathbf B}^{-1} {\mathbf a}, {\mathbf B}^{-1} {\mathbf a} \right \rangle =0 \qquad \mbox{(13)} }$

The previous expression (13) is a quadratic equation in $\displaystyle{ \Lambda }$ (note that matrix $\displaystyle{ {\mathbf B} }$ and the vector $\displaystyle{ \mathbf a }$ are also known) and provides two solutions, that introduced in expression (10) provides the searched solution:

$\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \qquad \mbox{(14)} }$.

The other solution is far from the earth surface.

## Generalisation to the case of $\displaystyle{ n }$-measurements:

If more than four observations are available, the matrix $\displaystyle{ {\mathbf B} }$ is not square. However, multiplying by $\displaystyle{ {\mathbf B}^T }$, one obtains (Least Squares solution):

$\displaystyle{ {\mathbf B}^T{\mathbf a} -{\mathbf B}^T {\mathbf B}\,{\mathbf M} \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] +\Lambda \; {\mathbf B}^T {\mathbf 1}=0 \qquad \mbox{(15)} }$

where:

$\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] ={\mathbf M} ({\mathbf B}^T {\mathbf B})^{-1}{\mathbf B}^T(\Lambda \; {\mathbf 1} + {\mathbf a}) \qquad \mbox{(16)} }$

and then:

$\displaystyle{ \begin{array}{r} \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle -1 \right ] \Lambda +\\[0.3cm] + \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle =0 \end{array} \qquad \mbox{(17)} }$

## Notes

1. ^ The tropospheric and ionospheric terms, $\displaystyle{ T^j }$ and $\displaystyle{ \hat{\alpha} \,I^j }$, can not be included, because the need to consider the satellite-receiver ray. Off course, after an initial computation of the receiver coordinates, the method could be iterated using the ionospheric and tropospheric corrections to improve the solution.
2. ^ $\displaystyle{ \left \langle{\mathbf a},{\mathbf b}\right \rangle={\mathbf a}^{t} \; {\mathbf M} \; {\mathbf b}= \left[ \begin{array}{c} a_1,a_2,a_3,a_4 \end{array} \right] \left( \begin{array}{cccc} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&-1\\ \end{array} \right) \left[ \begin{array}{c} b_1\\ b_2\\ b_3\\ b_4 \end{array} \right] }$