If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

MSAS Architecture

From Navipedia
Revision as of 16:22, 8 September 2014 by Filipe.Pelica (talk | contribs) (fixed broken link.)
Jump to navigation Jump to search


MSASMSAS
Title MSAS Architecture
Edited by GMV
Level Basic
Year of Publication 2011

The MTSAT Satellite Augmentation System (MSAS) is the Japanese Satellite Based Augmentation System (SBAS) System:[1] a GPS Augmentation system with the goal of improving its accuracy, integrity, and availability, and that uses the Multifunctional Transport Satellites (MTSAT) owned and operated by the Japanese Ministry of Land, Infrastructure and Transport and the Japan Meteorological Agency (JMA).[2]

First tests were accomplished successfully, and MSAS system for aviation use was declared operational in September 27, 2007,[3][4][5] providing a service of horizontal guidance for En-route through Non-Precision Approach.[1][3][6]


MSAS Architecture

MSAS works by processing GPS data collected by a network of reference stations to generate the SBAS message which is uploaded to the GEO satellites. The GEO satellites broadcast this information to the user receivers, which compute the aircraft positioning and inform on potential alert messages.[6]

MSAS Architecture

The main layers of MSAS architecture are:[6]

  • MSAS Ground Segment: The ground segment is composed of four Ground Monitor Station (GMS) that collect information on the GPS and MTSAT signals. Then, the GMS send their data to two Master Control Station (MCS) in Kobe and Hitachiota, that compute precise differential corrections and integrity bounds and send them to the MTSAT satellites for rebroadcast to the User Segment. The MSAS Ground Segment is completed with two Monitor and Ranging Station (MRS), whose purpose is primarily the correct orbit determination of the MTSAT satellites.
  • MSAS Space Segment: The space segment consists of two geosynchronous satellites (GEO): the Multifunctional Transport Satellites (MTSAT). These satellites are used also for meteorological purposes. Their navigation payloads are in charge of broadcasting the correction messages generated by the Master Control Stations for reception by the User Segment.
  • MSAS User Segment: The user segment is the GPS and SBAS-enabled receiver, which uses the information broadcast from each GPS satellite to determine its location and the current time, and receives the MSAS corrections from the Space Segment.

Notes

References