If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor
Bancroft Method: Difference between revisions
Carlos.Lopez (talk | contribs) No edit summary |
Carlos.Lopez (talk | contribs) No edit summary |
||
Line 7: | Line 7: | ||
|Logo=gAGE | |Logo=gAGE | ||
}} | }} | ||
The Bancroft method allows to obtain a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location. | The Bancroft method allows to obtain a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location. | ||
==Raising and resolution == | ==Raising and resolution== | ||
<math> PR^j</math> | Let <math>PR^j</math> the prefit-residual of satellite-<math>j</math>, computed from equation (1) | ||
<math> | |||
R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j | |||
\qquad \mbox{(1)}</math> | |||
after removing all model terms not needing the a priory knowledge of the receiver position:<ref group=“footnotes”>The tropospheric and ionospheric terms, <math>T^j</math> and <math>\hat{\alpha} \,I^j</math>, can not be included, because the need to consider the satellite-receiver ray. Off course, after an initial computation of the receiver coordinates, the method could be iterated using the ionospheric and tropospheric corrections to improve the solution.</ref> | |||
<math> PR^j\equiv R^j +c\,\delta t^j-TGD^j</math> | <math> | ||
PR^j\equiv R^j +c\,\delta t^j-TGD^j | |||
\qquad \mbox{(2)}</math> | |||
Thence, neglecting the tropospheric and ionospheric terms, as well as the multipath and receiver noise, the equation (3) | |||
<math> | <math> | ||
\begin{array}{r} | |||
R^j-D^j\simeq \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c\,\delta t\\[0.3cm] | |||
j=1,2,...,n~~~~ (n \geq 4)\\ | |||
\end{array} | |||
\qquad \mbox{(3)}</math> | |||
can be written as: | |||
<math>\left \langle{a},{b}\right \rangle={a}^{t} \; {M} \; { | <math> | ||
PR^j = \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c \, \delta t | |||
\qquad \mbox{(4)}</math> | |||
Developing the previous equation (4), it follows: | |||
<math>\left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^j} \; \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0</math> | |||
Then, calling <math>{\mathbf r}=[x,y,z]^T</math> and considering the inner product of | |||
Lorentz <ref group=“footnotes”> | |||
<math> | |||
\left \langle{\mathbf a},{\mathbf b}\right \rangle={\mathbf a}^{t} \; {\mathbf M} \; {\mathbf b}= | |||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
Line 51: | Line 71: | ||
b_4 | b_4 | ||
\end{array} | \end{array} | ||
\right] </math> | \right] | ||
</math> | |||
</ref> | |||
the previous equation can be expressed in a more compact way as: | |||
<math> | <math>\frac{1}{2} \left \langle | ||
\frac{1}{2} \left \langle | |||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}^j\\ | {\mathbf r}^j\\ | ||
PR^j\\ | PR^j\\ | ||
\end{array} | \end{array} | ||
Line 64: | Line 85: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}^j\\ | {\mathbf r}^j\\ | ||
PR^j\\ | PR^j\\ | ||
\end{array} | \end{array} | ||
Line 73: | Line 94: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}^j\\ | {\mathbf r}^j\\ | ||
PR^j\\ | PR^j\\ | ||
\end{array} | \end{array} | ||
Line 79: | Line 100: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
Line 88: | Line 109: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
Line 94: | Line 115: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
Line 102: | Line 123: | ||
</math> | </math> | ||
<math> PR^j</math> | The former equation can be raised for every satellite (or prefit-residual <math>PR^j</math>). | ||
<math> | If four measurements are available, thence, the following matrix can be written, containing all the available information on satellite coordinates and | ||
{B}= | pseudoranges (every row corresponds to a satellite): | ||
<math> | |||
{\mathbf B}= | |||
\left( | \left( | ||
\begin{array}{cccc} | \begin{array}{cccc} | ||
Line 114: | Line 139: | ||
\end{array} | \end{array} | ||
\right) | \right) | ||
</math> | \qquad \mbox{(5)}</math> | ||
Then, calling: | |||
<math> | <math>\Lambda= | ||
\Lambda= | |||
\frac{1}{2} | \frac{1}{2} | ||
\left \langle | \left \langle | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
Line 128: | Line 155: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
Line 135: | Line 162: | ||
\; , | \; , | ||
\; | \; | ||
{1}= | {\mathbf 1}= | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
Line 146: | Line 173: | ||
\; , | \; , | ||
\; | \; | ||
{a}= | {\mathbf a}= | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
Line 164: | Line 191: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}^j\\ | {\mathbf r}^j\\ | ||
PR^j\\ | PR^j\\ | ||
\end{array} | \end{array} | ||
Line 170: | Line 197: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}^j\\ | {\mathbf r}^j\\ | ||
PR^j\\ | PR^j\\ | ||
\end{array} | \end{array} | ||
Line 177: | Line 204: | ||
</math> | </math> | ||
<math> | |||
{a} -{B}\,{M} \left[ | The four equations for pseudorange can be expressed as: | ||
<math>{\mathbf a} -{\mathbf B}\,{\mathbf M} \left[ | |||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
\right] | \right] | ||
+\Lambda \; {1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\; | +\Lambda \; {\mathbf 1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\; | ||
{M}=\left( | {\mathbf M}=\left( | ||
\begin{array}{cccc} | \begin{array}{cccc} | ||
1&0&0&0\\ | 1&0&0&0\\ | ||
Line 194: | Line 223: | ||
\right) | \right) | ||
</math> | </math> | ||
from where: | |||
<math> | <math> | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
\right] | \right] | ||
={M} {B}^{-1} (\Lambda \; {1} + {a}) | ={\mathbf M} {\mathbf B}^{-1} (\Lambda \; {\mathbf 1} + {\mathbf a}) | ||
\qquad \mbox{(6)}</math> | |||
\ | |||
</math> | |||
Then, taking into account the following equality <math>\langle {\mathbf M}{\mathbf g},{\mathbf M}{\mathbf h} \rangle=\langle {\mathbf g},{\mathbf h} \rangle</math>, and | |||
that | |||
<math> | <math> | ||
\Lambda= | \Lambda= | ||
\frac{1}{2} | \frac{1}{2} | ||
\left \langle | |||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
Line 223: | Line 252: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
\right] | \right] | ||
\right \rangle | \right \rangle | ||
</math>, from the former expression, one obtains: | |||
<math> | |||
\left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf a} \right \rangle -1 \right ] \Lambda + \left \langle {\mathbf B}^{-1} {\mathbf a}, {\mathbf B}^{-1} {\mathbf a} \right \rangle =0 | |||
\qquad \mbox{(7)}</math> | |||
The previous expression is a quadratic equation in <math>\Lambda</math> (note that matrix <math>{\mathbf B}</math> and the vector {\mathbf a} are also known) and provides two solutions, one of them is the searched solution | |||
<math> | |||
\left[ | |||
\begin{array}{c} | |||
{\mathbf r}\\ | |||
c\,\delta t\\ | |||
\end{array} | |||
\right]</math>. | |||
The other solution is far from the earth surface. | |||
==Generalisation to the case of <math>n</math>-measurements:== | |||
If more than four observations are available, the matrix <math>{\mathbf B}</math> is not square. However, multiplying by <math>{\mathbf B}^T</math>, one obtains (Least Squares solution): | |||
<math>{\mathbf B}^T{\mathbf a} -{\mathbf B}^T {\mathbf B}\,{\mathbf M} \left[ | |||
\begin{array}{c} | |||
{\mathbf r}\\ | |||
c\,\delta t\\ | |||
\end{array} | |||
\right] | |||
+\Lambda \; {\mathbf B}^T {\mathbf 1}=0 | |||
</math> | </math> | ||
where: | |||
<math> | <math> | ||
\left \langle {B}^{-1} {1}, {B}^{-1} {1} \right \rangle \Lambda^2+ 2\left [ \left \langle {B}^{-1} {1}, {B}^{-1} {a} \right \rangle -1 \right ] \Lambda + | \left[ | ||
\begin{array}{c} | |||
{\mathbf r}\\ | |||
c\,\delta t\\ | |||
\end{array} | |||
\right] | |||
={\mathbf M} ({\mathbf B}^T {\mathbf B})^{-1}{\mathbf B}^T(\Lambda \; {\mathbf 1} + {\mathbf a}) | |||
</math> | |||
and then: | |||
<math> | |||
\begin{array}{r} | |||
\left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle -1 \right ] \Lambda +\\[0.3cm] | |||
+ \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle =0 | |||
\end{array} | |||
</math> | </math> | ||
==Notes== | |||
<references group="footnotes"/ > | |||
[[Category:Fundamentals]] | [[Category:Fundamentals]] |
Revision as of 08:55, 31 March 2011
Fundamentals | |
---|---|
Title | Bancroft Method |
Author(s) | J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain. |
Level | Advanced |
Year of Publication | 2011 |
The Bancroft method allows to obtain a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.
Raising and resolution
Let [math]\displaystyle{ PR^j }[/math] the prefit-residual of satellite-[math]\displaystyle{ j }[/math], computed from equation (1)
[math]\displaystyle{ R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j \qquad \mbox{(1)} }[/math]
after removing all model terms not needing the a priory knowledge of the receiver position:[“footnotes” 1]
[math]\displaystyle{ PR^j\equiv R^j +c\,\delta t^j-TGD^j \qquad \mbox{(2)} }[/math]
Thence, neglecting the tropospheric and ionospheric terms, as well as the multipath and receiver noise, the equation (3)
[math]\displaystyle{ \begin{array}{r} R^j-D^j\simeq \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c\,\delta t\\[0.3cm] j=1,2,...,n~~~~ (n \geq 4)\\ \end{array} \qquad \mbox{(3)} }[/math]
can be written as:
[math]\displaystyle{ PR^j = \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c \, \delta t \qquad \mbox{(4)} }[/math]
Developing the previous equation (4), it follows:
[math]\displaystyle{ \left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^j} \; \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0 }[/math]
Then, calling [math]\displaystyle{ {\mathbf r}=[x,y,z]^T }[/math] and considering the inner product of
Lorentz [“footnotes” 2]
the previous equation can be expressed in a more compact way as:
[math]\displaystyle{ \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right] \right \rangle - \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle + \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle =0 }[/math]
The former equation can be raised for every satellite (or prefit-residual [math]\displaystyle{ PR^j }[/math]).
If four measurements are available, thence, the following matrix can be written, containing all the available information on satellite coordinates and
pseudoranges (every row corresponds to a satellite):
[math]\displaystyle{ {\mathbf B}= \left( \begin{array}{cccc} x^1&y^1&z^1&PR^1\\ x^2&y^2&z^2&PR^2\\ x^3&y^3&z^3&PR^3\\ x^4&y^4&z^4&PR^4\\ \end{array} \right) \qquad \mbox{(5)} }[/math]
Then, calling:
[math]\displaystyle{ \Lambda= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle \; , \; {\mathbf 1}= \left[ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ \end{array} \right] \; , \; {\mathbf a}= \left[ \begin{array}{c} a_1\\ a_2\\ a_3\\ a_4\\ \end{array} \right] \; \mbox{being} \; \; a_j= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right] \right \rangle }[/math]
The four equations for pseudorange can be expressed as:
[math]\displaystyle{ {\mathbf a} -{\mathbf B}\,{\mathbf M} \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] +\Lambda \; {\mathbf 1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\; {\mathbf M}=\left( \begin{array}{cccc} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&-1\\ \end{array} \right) }[/math]
from where:
[math]\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] ={\mathbf M} {\mathbf B}^{-1} (\Lambda \; {\mathbf 1} + {\mathbf a}) \qquad \mbox{(6)} }[/math]
Then, taking into account the following equality [math]\displaystyle{ \langle {\mathbf M}{\mathbf g},{\mathbf M}{\mathbf h} \rangle=\langle {\mathbf g},{\mathbf h} \rangle }[/math], and
that
[math]\displaystyle{
\Lambda=
\frac{1}{2}
\left \langle
\left[
\begin{array}{c}
{\mathbf r}\\
c\,\delta t\\
\end{array}
\right],
\left[
\begin{array}{c}
{\mathbf r}\\
c\,\delta t\\
\end{array}
\right]
\right \rangle
}[/math], from the former expression, one obtains:
[math]\displaystyle{ \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf a} \right \rangle -1 \right ] \Lambda + \left \langle {\mathbf B}^{-1} {\mathbf a}, {\mathbf B}^{-1} {\mathbf a} \right \rangle =0 \qquad \mbox{(7)} }[/math]
The previous expression is a quadratic equation in [math]\displaystyle{ \Lambda }[/math] (note that matrix [math]\displaystyle{ {\mathbf B} }[/math] and the vector {\mathbf a} are also known) and provides two solutions, one of them is the searched solution
[math]\displaystyle{
\left[
\begin{array}{c}
{\mathbf r}\\
c\,\delta t\\
\end{array}
\right] }[/math].
The other solution is far from the earth surface.
Generalisation to the case of [math]\displaystyle{ n }[/math]-measurements:
If more than four observations are available, the matrix [math]\displaystyle{ {\mathbf B} }[/math] is not square. However, multiplying by [math]\displaystyle{ {\mathbf B}^T }[/math], one obtains (Least Squares solution):
[math]\displaystyle{ {\mathbf B}^T{\mathbf a} -{\mathbf B}^T {\mathbf B}\,{\mathbf M} \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] +\Lambda \; {\mathbf B}^T {\mathbf 1}=0 }[/math]
where:
[math]\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] ={\mathbf M} ({\mathbf B}^T {\mathbf B})^{-1}{\mathbf B}^T(\Lambda \; {\mathbf 1} + {\mathbf a}) }[/math]
and then:
[math]\displaystyle{ \begin{array}{r} \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle -1 \right ] \Lambda +\\[0.3cm] + \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle =0 \end{array} }[/math]
Notes
<references group="footnotes"/ >
Cite error: <ref>
tags exist for a group named "“footnotes”", but no corresponding <references group="“footnotes”"/>
tag was found