If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor
Bancroft Method: Difference between revisions
Carlos.Lopez (talk | contribs) No edit summary |
mNo edit summary |
||
(16 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Article Infobox2 | {{Article Infobox2 | ||
|Category=Fundamentals | |Category=Fundamentals | ||
|Authors=J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain. | |||
|Authors= J. Sanz Subirana, | |||
|Level=Advanced | |Level=Advanced | ||
|YearOfPublication=2011 | |YearOfPublication=2011 | ||
| | |Title={{PAGENAME}} | ||
}} | }} | ||
The Bancroft method allows obtaining a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location. | |||
==Raising and resolution== | |||
Let <math>PR^j</math> the prefit-residual of satellite-<math>j</math>, computed from equation (1) | |||
::<math> | |||
R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j | |||
\qquad \mbox{(1)}</math> | |||
= | after removing all model terms not needing the a priory knowledge of the receiver position:<ref group="footnotes">The tropospheric and ionospheric terms, <math>T^j</math> and <math>\hat{\alpha} \,I^j</math>, can not be included, because the need to consider the satellite-receiver ray. Off course, after an initial computation of the receiver coordinates, the method could be iterated using the ionospheric and tropospheric corrections to improve the solution.</ref> | ||
<math> PR^j</math> | ::<math> | ||
PR^j\equiv R^j +c\,\delta t^j-TGD^j | |||
\qquad \mbox{(2)}</math> | |||
Thence, neglecting the tropospheric and ionospheric terms, as well as the multipath and receiver noise, the equation (3) | |||
<math> | ::<math> | ||
\begin{array}{r} | |||
R^j-D^j\simeq \sqrt{(x^j-x)^2+(y^j-y)^2+(z^j-z)^2}+c\,\delta t\\[0.3cm] | |||
j=1,2,...,n~~~~ (n \geq 4)\\ | |||
\end{array} | |||
\qquad \mbox{(3)}</math> | |||
can be written as: | |||
<math> | ::<math> | ||
PR^j = \sqrt{(x^j-x)^2+(y^j-y)^2+(z^j-z)^2}+c \, \delta t | |||
\qquad \mbox{(4)}</math> | |||
Developing the previous equation (4), it follows: | |||
<math>\left \langle{a},{b}\right \rangle={a}^{t} \; {M} \; { | ::<math>\left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^jc\,\delta t} \; \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0 \qquad \mbox{(5)}</math> | ||
Then, calling <math>{\mathbf r}=[x,y,z]^T</math> and considering the inner product of | |||
Lorentz <ref group="footnotes"> | |||
<math> | |||
\left \langle{\mathbf a},{\mathbf b}\right \rangle={\mathbf a}^{t} \; {\mathbf M} \; {\mathbf b}= | |||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
Line 51: | Line 72: | ||
b_4 | b_4 | ||
\end{array} | \end{array} | ||
\right] </math> | \right] | ||
</math> | |||
</ref> | |||
the previous equation (5) can be expressed in a more compact way as: | |||
::<math>\frac{1}{2} \left \langle | |||
<math> | |||
\frac{1}{2} \left \langle | |||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}^j\\ | {\mathbf r}^j\\ | ||
PR^j\\ | PR^j\\ | ||
\end{array} | \end{array} | ||
Line 64: | Line 86: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}^j\\ | {\mathbf r}^j\\ | ||
PR^j\\ | PR^j\\ | ||
\end{array} | \end{array} | ||
Line 73: | Line 95: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}^j\\ | {\mathbf r}^j\\ | ||
PR^j\\ | PR^j\\ | ||
\end{array} | \end{array} | ||
Line 79: | Line 101: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
Line 88: | Line 110: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
Line 94: | Line 116: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
Line 100: | Line 122: | ||
\right \rangle | \right \rangle | ||
=0 | =0 | ||
</math> | \qquad \mbox{(6)}</math> | ||
The former equation can be raised for every satellite (or prefit-residual <math>PR^j</math>). | |||
If four measurements are available, thence, the following matrix can be written, containing all the available information on satellite coordinates and pseudoranges (every row corresponds to a satellite): | |||
<math> | ::<math> | ||
{B}= | {\mathbf B}= | ||
\left( | \left( | ||
\begin{array}{cccc} | \begin{array}{cccc} | ||
Line 114: | Line 141: | ||
\end{array} | \end{array} | ||
\right) | \right) | ||
</math> | \qquad \mbox{(7)}</math> | ||
Then, calling: | |||
<math> | ::<math>\Lambda= | ||
\Lambda= | |||
\frac{1}{2} | \frac{1}{2} | ||
\left \langle | \left \langle | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
Line 128: | Line 157: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
Line 135: | Line 164: | ||
\; , | \; , | ||
\; | \; | ||
{1}= | {\mathbf 1}= | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
Line 146: | Line 175: | ||
\; , | \; , | ||
\; | \; | ||
{a}= | {\mathbf a}= | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
Line 164: | Line 193: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}^j\\ | {\mathbf r}^j\\ | ||
PR^j\\ | PR^j\\ | ||
\end{array} | \end{array} | ||
Line 170: | Line 199: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}^j\\ | {\mathbf r}^j\\ | ||
PR^j\\ | PR^j\\ | ||
\end{array} | \end{array} | ||
\right] | \right] | ||
\right \rangle | \right \rangle | ||
</math> | \qquad \mbox{(8)}</math> | ||
The four equations for pseudorange can be expressed as: | |||
<math> | ::<math>{\mathbf a} -{\mathbf B}\,{\mathbf M} \left[ | ||
{a} -{B}\,{M} \left[ | |||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
\right] | \right] | ||
+\Lambda \; {1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\; | +\Lambda \; {\mathbf 1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\; | ||
{M}=\left( | {\mathbf M}=\left( | ||
\begin{array}{cccc} | \begin{array}{cccc} | ||
1&0&0&0\\ | 1&0&0&0\\ | ||
Line 193: | Line 225: | ||
\end{array} | \end{array} | ||
\right) | \right) | ||
</math> | \qquad \mbox{(9)}</math> | ||
from where: | |||
<math> | ::<math> | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
\right] | \right] | ||
={M} {B}^{-1} (\Lambda \; {1} + {a}) | ={\mathbf M} {\mathbf B}^{-1} (\Lambda \; {\mathbf 1} + {\mathbf a}) | ||
</math> | \qquad \mbox{(10)}</math> | ||
Then, taking into account the following equality | |||
:: <math>\langle {\mathbf M}{\mathbf g},{\mathbf M}{\mathbf h} \rangle=\langle {\mathbf g},{\mathbf h} \rangle \qquad \mbox{(11)}</math>, | |||
and that | |||
<math> | ::<math> | ||
\Lambda= | \Lambda= | ||
\frac{1}{2} | \frac{1}{2} | ||
\left \langle | |||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
Line 223: | Line 261: | ||
\left[ | \left[ | ||
\begin{array}{c} | \begin{array}{c} | ||
{r}\\ | {\mathbf r}\\ | ||
c\,\delta t\\ | c\,\delta t\\ | ||
\end{array} | \end{array} | ||
\right] | \right] | ||
\right \rangle | \right \rangle | ||
</math> | \qquad \mbox{(12)}</math>, | ||
from the former expression (10), one obtains: | |||
::<math> | |||
\left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf a} \right \rangle -1 \right ] \Lambda + \left \langle {\mathbf B}^{-1} {\mathbf a}, {\mathbf B}^{-1} {\mathbf a} \right \rangle =0 | |||
\qquad \mbox{(13)}</math> | |||
The previous expression (13) is a quadratic equation in <math>\Lambda</math> (note that matrix <math>{\mathbf B}</math> and the vector <math>\mathbf a </math> are also known) and provides two solutions, that introduced in expression (10) provides the searched solution: | |||
::<math> | |||
\left[ | |||
\begin{array}{c} | |||
{\mathbf r}\\ | |||
c\,\delta t\\ | |||
\end{array} | |||
\right] | |||
\qquad \mbox{(14)}</math>. | |||
The other solution is far from the earth surface. | |||
==Generalisation to the case of <math>n</math>-measurements:== | |||
If more than four observations are available, the matrix <math>{\mathbf B}</math> is not square. However, multiplying by <math>{\mathbf B}^T</math>, one obtains (Least Squares solution): | |||
::<math> | |||
{\mathbf B}^T{\mathbf a} -{\mathbf B}^T {\mathbf B}\,{\mathbf M} \left[ | |||
\begin{array}{c} | |||
{\mathbf r}\\ | |||
c\,\delta t\\ | |||
\end{array} | |||
\right] | |||
+\Lambda \; {\mathbf B}^T {\mathbf 1}=0 | |||
\qquad \mbox{(15)}</math> | |||
where: | |||
::<math> | |||
\left[ | |||
\begin{array}{c} | |||
{\mathbf r}\\ | |||
c\,\delta t\\ | |||
\end{array} | |||
\right] | |||
={\mathbf M} ({\mathbf B}^T {\mathbf B})^{-1}{\mathbf B}^T(\Lambda \; {\mathbf 1} + {\mathbf a}) | |||
\qquad \mbox{(16)}</math> | |||
and then: | |||
::<math> | |||
\begin{array}{r} | |||
\left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle -1 \right ] \Lambda +\\[0.3cm] | |||
+ \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle =0 | |||
\end{array} | |||
\qquad \mbox{(17)}</math> | |||
==Notes== | |||
<references group="footnotes"/> | |||
</ | |||
[[Category:Fundamentals]] | [[Category:Fundamentals]] | ||
[[Category:GNSS Measurements Modelling]] |
Latest revision as of 11:12, 7 July 2014
Fundamentals | |
---|---|
Title | Bancroft Method |
Author(s) | J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain. |
Level | Advanced |
Year of Publication | 2011 |
The Bancroft method allows obtaining a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.
Raising and resolution
Let [math]\displaystyle{ PR^j }[/math] the prefit-residual of satellite-[math]\displaystyle{ j }[/math], computed from equation (1)
- [math]\displaystyle{ R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j \qquad \mbox{(1)} }[/math]
after removing all model terms not needing the a priory knowledge of the receiver position:[footnotes 1]
- [math]\displaystyle{ PR^j\equiv R^j +c\,\delta t^j-TGD^j \qquad \mbox{(2)} }[/math]
Thence, neglecting the tropospheric and ionospheric terms, as well as the multipath and receiver noise, the equation (3)
- [math]\displaystyle{ \begin{array}{r} R^j-D^j\simeq \sqrt{(x^j-x)^2+(y^j-y)^2+(z^j-z)^2}+c\,\delta t\\[0.3cm] j=1,2,...,n~~~~ (n \geq 4)\\ \end{array} \qquad \mbox{(3)} }[/math]
can be written as:
- [math]\displaystyle{ PR^j = \sqrt{(x^j-x)^2+(y^j-y)^2+(z^j-z)^2}+c \, \delta t \qquad \mbox{(4)} }[/math]
Developing the previous equation (4), it follows:
- [math]\displaystyle{ \left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^jc\,\delta t} \; \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0 \qquad \mbox{(5)} }[/math]
Then, calling [math]\displaystyle{ {\mathbf r}=[x,y,z]^T }[/math] and considering the inner product of
Lorentz [footnotes 2]
the previous equation (5) can be expressed in a more compact way as:
- [math]\displaystyle{ \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right] \right \rangle - \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle + \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle =0 \qquad \mbox{(6)} }[/math]
The former equation can be raised for every satellite (or prefit-residual [math]\displaystyle{ PR^j }[/math]).
If four measurements are available, thence, the following matrix can be written, containing all the available information on satellite coordinates and pseudoranges (every row corresponds to a satellite):
- [math]\displaystyle{ {\mathbf B}= \left( \begin{array}{cccc} x^1&y^1&z^1&PR^1\\ x^2&y^2&z^2&PR^2\\ x^3&y^3&z^3&PR^3\\ x^4&y^4&z^4&PR^4\\ \end{array} \right) \qquad \mbox{(7)} }[/math]
Then, calling:
- [math]\displaystyle{ \Lambda= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle \; , \; {\mathbf 1}= \left[ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ \end{array} \right] \; , \; {\mathbf a}= \left[ \begin{array}{c} a_1\\ a_2\\ a_3\\ a_4\\ \end{array} \right] \; \mbox{being} \; \; a_j= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right] \right \rangle \qquad \mbox{(8)} }[/math]
The four equations for pseudorange can be expressed as:
- [math]\displaystyle{ {\mathbf a} -{\mathbf B}\,{\mathbf M} \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] +\Lambda \; {\mathbf 1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\; {\mathbf M}=\left( \begin{array}{cccc} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&-1\\ \end{array} \right) \qquad \mbox{(9)} }[/math]
from where:
- [math]\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] ={\mathbf M} {\mathbf B}^{-1} (\Lambda \; {\mathbf 1} + {\mathbf a}) \qquad \mbox{(10)} }[/math]
Then, taking into account the following equality
- [math]\displaystyle{ \langle {\mathbf M}{\mathbf g},{\mathbf M}{\mathbf h} \rangle=\langle {\mathbf g},{\mathbf h} \rangle \qquad \mbox{(11)} }[/math],
and that
- [math]\displaystyle{ \Lambda= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle \qquad \mbox{(12)} }[/math],
from the former expression (10), one obtains:
- [math]\displaystyle{ \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf a} \right \rangle -1 \right ] \Lambda + \left \langle {\mathbf B}^{-1} {\mathbf a}, {\mathbf B}^{-1} {\mathbf a} \right \rangle =0 \qquad \mbox{(13)} }[/math]
The previous expression (13) is a quadratic equation in [math]\displaystyle{ \Lambda }[/math] (note that matrix [math]\displaystyle{ {\mathbf B} }[/math] and the vector [math]\displaystyle{ \mathbf a }[/math] are also known) and provides two solutions, that introduced in expression (10) provides the searched solution:
- [math]\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \qquad \mbox{(14)} }[/math].
The other solution is far from the earth surface.
Generalisation to the case of [math]\displaystyle{ n }[/math]-measurements:
If more than four observations are available, the matrix [math]\displaystyle{ {\mathbf B} }[/math] is not square. However, multiplying by [math]\displaystyle{ {\mathbf B}^T }[/math], one obtains (Least Squares solution):
- [math]\displaystyle{ {\mathbf B}^T{\mathbf a} -{\mathbf B}^T {\mathbf B}\,{\mathbf M} \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] +\Lambda \; {\mathbf B}^T {\mathbf 1}=0 \qquad \mbox{(15)} }[/math]
where:
- [math]\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] ={\mathbf M} ({\mathbf B}^T {\mathbf B})^{-1}{\mathbf B}^T(\Lambda \; {\mathbf 1} + {\mathbf a}) \qquad \mbox{(16)} }[/math]
and then:
- [math]\displaystyle{ \begin{array}{r} \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle -1 \right ] \Lambda +\\[0.3cm] + \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle =0 \end{array} \qquad \mbox{(17)} }[/math]
Notes
- ^ The tropospheric and ionospheric terms, [math]\displaystyle{ T^j }[/math] and [math]\displaystyle{ \hat{\alpha} \,I^j }[/math], can not be included, because the need to consider the satellite-receiver ray. Off course, after an initial computation of the receiver coordinates, the method could be iterated using the ionospheric and tropospheric corrections to improve the solution.
- ^ [math]\displaystyle{ \left \langle{\mathbf a},{\mathbf b}\right \rangle={\mathbf a}^{t} \; {\mathbf M} \; {\mathbf b}= \left[ \begin{array}{c} a_1,a_2,a_3,a_4 \end{array} \right] \left( \begin{array}{cccc} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&-1\\ \end{array} \right) \left[ \begin{array}{c} b_1\\ b_2\\ b_3\\ b_4 \end{array} \right] }[/math]