If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

APPROVED
Vicente.Navarro approved this page 14 July 2025
14 July 2025

Bancroft Method: Difference between revisions

From Navipedia
Jump to navigation Jump to search
No edit summary
mNo edit summary
 
(16 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Article Infobox2
{{Article Infobox2
|Category=Fundamentals
|Category=Fundamentals
|Title={{PAGENAME}}
|Authors=J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
|Authors= J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain.
|Level=Advanced
|Level=Advanced
|YearOfPublication=2011
|YearOfPublication=2011
|Logo=gAGE
|Title={{PAGENAME}}
}}
}}
The Bancroft method allows obtaining a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.
==Raising and resolution==
Let <math>PR^j</math> the prefit-residual of satellite-<math>j</math>, computed from equation (1)
::<math>
R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j
\qquad \mbox{(1)}</math>


The Bancroft method allows to obtain a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.


==Raising and resolution ==
after removing all model terms  not needing the a priory knowledge of the receiver position:<ref group="footnotes">The tropospheric and ionospheric terms,  <math>T^j</math> and <math>\hat{\alpha} \,I^j</math>, can not be included, because the need to consider the satellite-receiver ray. Off course, after an initial computation of the receiver coordinates, the method could be iterated using the ionospheric and tropospheric corrections to improve the solution.</ref>


<math> PR^j</math>
::<math>
PR^j\equiv R^j +c\,\delta t^j-TGD^j
\qquad \mbox{(2)}</math>




<math> R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j </math>


Thence, neglecting the tropospheric and ionospheric terms, as well as the multipath and receiver noise, the equation (3)


<math> PR^j\equiv R^j +c\,\delta t^j-TGD^j</math>
::<math>
\begin{array}{r}
R^j-D^j\simeq \sqrt{(x^j-x)^2+(y^j-y)^2+(z^j-z)^2}+c\,\delta t\\[0.3cm]
j=1,2,...,n~~~~ (n \geq 4)\\
\end{array}
\qquad \mbox{(3)}</math>


can be written as:


<math> R^j-D^j\simeq \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c\,\delta t</math>
::<math>
<math> j=1,2,...,n~~~~ (n \geq 4)</math>
PR^j = \sqrt{(x^j-x)^2+(y^j-y)^2+(z^j-z)^2}+c \, \delta t
\qquad \mbox{(4)}</math>


<math> PR^j = \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c \, \delta t</math>


<math> \left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^j} \;  \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0</math>


<math> {r}=[x,y,z]^T</math>
Developing the previous equation (4), it follows:


<math>\left \langle{a},{b}\right \rangle={a}^{t} \; {M} \; {'b}=
::<math>\left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^jc\,\delta t} \;  \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0 \qquad \mbox{(5)}</math>
 
 
Then, calling <math>{\mathbf r}=[x,y,z]^T</math> and considering the inner product of
Lorentz <ref group="footnotes">
<math>
\left \langle{\mathbf a},{\mathbf b}\right \rangle={\mathbf a}^{t} \; {\mathbf M} \; {\mathbf b}=
\left[
\left[
\begin{array}{c}
\begin{array}{c}
Line 51: Line 72:
b_4
b_4
\end{array}
\end{array}
\right] </math>
\right]
</math>
</ref>
the previous equation (5) can be expressed in a more compact way as:


 
::<math>\frac{1}{2} \left  \langle
<math>
\frac{1}{2} \left  \langle
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}^j\\
{\mathbf r}^j\\
PR^j\\
PR^j\\
\end{array}
\end{array}
Line 64: Line 86:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}^j\\
{\mathbf r}^j\\
PR^j\\
PR^j\\
\end{array}
\end{array}
Line 73: Line 95:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}^j\\
{\mathbf r}^j\\
PR^j\\
PR^j\\
\end{array}
\end{array}
Line 79: Line 101:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
Line 88: Line 110:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
Line 94: Line 116:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
Line 100: Line 122:
\right \rangle
\right \rangle
=0
=0
</math>
\qquad \mbox{(6)}</math>
 
 
 
The former equation can be raised for every satellite (or prefit-residual <math>PR^j</math>).
 


<math> PR^j</math>
If four measurements are available, thence, the following matrix can be written, containing all the available information on satellite coordinates and pseudoranges (every row corresponds to a satellite):


<math>  
::<math>
{B}=
{\mathbf B}=
\left(
\left(
\begin{array}{cccc}
\begin{array}{cccc}
Line 114: Line 141:
\end{array}
\end{array}
\right)
\right)
</math>
\qquad \mbox{(7)}</math>
 
 
Then, calling:


<math>
::<math>\Lambda=
\Lambda=
\frac{1}{2}
\frac{1}{2}
  \left  \langle
  \left  \langle
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
Line 128: Line 157:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
Line 135: Line 164:
\; ,
\; ,
\;
\;
{1}=
{\mathbf 1}=
\left[
\left[
\begin{array}{c}
\begin{array}{c}
Line 146: Line 175:
\; ,
\; ,
\;
\;
{a}=
{\mathbf a}=
\left[
\left[
\begin{array}{c}
\begin{array}{c}
Line 164: Line 193:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}^j\\
{\mathbf r}^j\\
PR^j\\
PR^j\\
\end{array}
\end{array}
Line 170: Line 199:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}^j\\
{\mathbf r}^j\\
PR^j\\
PR^j\\
\end{array}
\end{array}
\right]
\right]
\right \rangle
\right \rangle
</math>
\qquad \mbox{(8)}</math>
 
 
 
The four equations for pseudorange can be expressed as:


<math>
::<math>{\mathbf a} -{\mathbf B}\,{\mathbf M} \left[
{a} -{B}\,{M} \left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
\right]
\right]
+\Lambda \; {1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\;
+\Lambda \; {\mathbf 1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\;
{M}=\left(
{\mathbf M}=\left(
\begin{array}{cccc}
\begin{array}{cccc}
1&0&0&0\\
1&0&0&0\\
Line 193: Line 225:
\end{array}
\end{array}
\right)
\right)
</math>
\qquad \mbox{(9)}</math>
 
 
from where:


<math>
::<math>
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
\right]
\right]
={M} {B}^{-1} (\Lambda \; {1} + {a})
={\mathbf M} {\mathbf B}^{-1} (\Lambda \; {\mathbf 1} + {\mathbf a})
</math>
\qquad \mbox{(10)}</math>
 
 
 
Then, taking into account the following equality


:: <math>\langle {\mathbf M}{\mathbf g},{\mathbf M}{\mathbf h} \rangle=\langle {\mathbf g},{\mathbf h} \rangle \qquad \mbox{(11)}</math>,


<math>
\langle {M}{g},{M}{h} \rangle=\langle {g},{h} \rangle
</math>


and that


<math>
::<math>
\Lambda=
\Lambda=
\frac{1}{2}
\frac{1}{2}
\left  \langle
\left  \langle
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
Line 223: Line 261:
\left[
\left[
\begin{array}{c}
\begin{array}{c}
{r}\\
{\mathbf r}\\
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
\right]
\right]
\right \rangle
\right \rangle
</math>
\qquad \mbox{(12)}</math>
 
 
from the former expression (10), one obtains:
 
::<math>
\left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf 1} \right \rangle \Lambda^2+ 2\left [  \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf a} \right \rangle -1 \right ] \Lambda +  \left \langle {\mathbf B}^{-1} {\mathbf a}, {\mathbf B}^{-1} {\mathbf a} \right \rangle =0
\qquad \mbox{(13)}</math>
 
 
The previous expression (13) is a quadratic equation in <math>\Lambda</math> (note that matrix <math>{\mathbf B}</math> and the vector <math>\mathbf a </math> are also known) and provides two solutions, that introduced in expression (10) provides the searched solution:
 
::<math>
\left[
\begin{array}{c}
{\mathbf r}\\
c\,\delta t\\
\end{array}
\right]
\qquad \mbox{(14)}</math>.
 
The other solution is far from the earth surface.
 
==Generalisation to the case of <math>n</math>-measurements:==
 
 
If more than four observations are available, the matrix <math>{\mathbf B}</math> is not square. However, multiplying by <math>{\mathbf B}^T</math>, one obtains (Least Squares solution):
 
::<math>
{\mathbf B}^T{\mathbf a} -{\mathbf B}^T {\mathbf B}\,{\mathbf M} \left[
\begin{array}{c}
{\mathbf r}\\
c\,\delta t\\
\end{array}
\right]
+\Lambda \; {\mathbf B}^T {\mathbf 1}=0
\qquad \mbox{(15)}</math>
 
 
where:
 
::<math>
\left[
\begin{array}{c}
{\mathbf r}\\
c\,\delta t\\
\end{array}
\right]
={\mathbf M} ({\mathbf B}^T {\mathbf B})^{-1}{\mathbf B}^T(\Lambda \; {\mathbf 1} + {\mathbf a})
\qquad \mbox{(16)}</math>
 
 
and then:
 
::<math>
\begin{array}{r}
\left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1} \right \rangle \Lambda^2+ 2\left [  \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle -1 \right ] \Lambda +\\[0.3cm]
+ \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle =0
\end{array}
\qquad \mbox{(17)}</math>
 


<math>
==Notes==
\left \langle {B}^{-1} {1}, {B}^{-1} {1} \right \rangle \Lambda^2+ 2\left [  \left \langle {B}^{-1} {1}, {B}^{-1} {a} \right \rangle -1 \right ] \Lambda +  \left \langle {B}^{-1} {a}, {B}^{-1} {a} \right \rangle =0
<references group="footnotes"/>
</math>


[[Category:Fundamentals]]
[[Category:Fundamentals]]
[[Category:GNSS Measurements Modelling]]

Latest revision as of 11:12, 7 July 2014


FundamentalsFundamentals
Title Bancroft Method
Author(s) J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
Level Advanced
Year of Publication 2011

The Bancroft method allows obtaining a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.


Raising and resolution

Let [math]\displaystyle{ PR^j }[/math] the prefit-residual of satellite-[math]\displaystyle{ j }[/math], computed from equation (1)

[math]\displaystyle{ R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j \qquad \mbox{(1)} }[/math]


after removing all model terms not needing the a priory knowledge of the receiver position:[footnotes 1]

[math]\displaystyle{ PR^j\equiv R^j +c\,\delta t^j-TGD^j \qquad \mbox{(2)} }[/math]


Thence, neglecting the tropospheric and ionospheric terms, as well as the multipath and receiver noise, the equation (3)

[math]\displaystyle{ \begin{array}{r} R^j-D^j\simeq \sqrt{(x^j-x)^2+(y^j-y)^2+(z^j-z)^2}+c\,\delta t\\[0.3cm] j=1,2,...,n~~~~ (n \geq 4)\\ \end{array} \qquad \mbox{(3)} }[/math]

can be written as:

[math]\displaystyle{ PR^j = \sqrt{(x^j-x)^2+(y^j-y)^2+(z^j-z)^2}+c \, \delta t \qquad \mbox{(4)} }[/math]


Developing the previous equation (4), it follows:

[math]\displaystyle{ \left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^jc\,\delta t} \; \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0 \qquad \mbox{(5)} }[/math]


Then, calling [math]\displaystyle{ {\mathbf r}=[x,y,z]^T }[/math] and considering the inner product of Lorentz [footnotes 2] the previous equation (5) can be expressed in a more compact way as:

[math]\displaystyle{ \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right] \right \rangle - \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle + \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle =0 \qquad \mbox{(6)} }[/math]


The former equation can be raised for every satellite (or prefit-residual [math]\displaystyle{ PR^j }[/math]).


If four measurements are available, thence, the following matrix can be written, containing all the available information on satellite coordinates and pseudoranges (every row corresponds to a satellite):

[math]\displaystyle{ {\mathbf B}= \left( \begin{array}{cccc} x^1&y^1&z^1&PR^1\\ x^2&y^2&z^2&PR^2\\ x^3&y^3&z^3&PR^3\\ x^4&y^4&z^4&PR^4\\ \end{array} \right) \qquad \mbox{(7)} }[/math]


Then, calling:

[math]\displaystyle{ \Lambda= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle \; , \; {\mathbf 1}= \left[ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ \end{array} \right] \; , \; {\mathbf a}= \left[ \begin{array}{c} a_1\\ a_2\\ a_3\\ a_4\\ \end{array} \right] \; \mbox{being} \; \; a_j= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right] \right \rangle \qquad \mbox{(8)} }[/math]


The four equations for pseudorange can be expressed as:

[math]\displaystyle{ {\mathbf a} -{\mathbf B}\,{\mathbf M} \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] +\Lambda \; {\mathbf 1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\; {\mathbf M}=\left( \begin{array}{cccc} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&-1\\ \end{array} \right) \qquad \mbox{(9)} }[/math]


from where:

[math]\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] ={\mathbf M} {\mathbf B}^{-1} (\Lambda \; {\mathbf 1} + {\mathbf a}) \qquad \mbox{(10)} }[/math]


Then, taking into account the following equality

[math]\displaystyle{ \langle {\mathbf M}{\mathbf g},{\mathbf M}{\mathbf h} \rangle=\langle {\mathbf g},{\mathbf h} \rangle \qquad \mbox{(11)} }[/math],


and that

[math]\displaystyle{ \Lambda= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle \qquad \mbox{(12)} }[/math],


from the former expression (10), one obtains:

[math]\displaystyle{ \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf a} \right \rangle -1 \right ] \Lambda + \left \langle {\mathbf B}^{-1} {\mathbf a}, {\mathbf B}^{-1} {\mathbf a} \right \rangle =0 \qquad \mbox{(13)} }[/math]


The previous expression (13) is a quadratic equation in [math]\displaystyle{ \Lambda }[/math] (note that matrix [math]\displaystyle{ {\mathbf B} }[/math] and the vector [math]\displaystyle{ \mathbf a }[/math] are also known) and provides two solutions, that introduced in expression (10) provides the searched solution:

[math]\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \qquad \mbox{(14)} }[/math].

The other solution is far from the earth surface.

Generalisation to the case of [math]\displaystyle{ n }[/math]-measurements:

If more than four observations are available, the matrix [math]\displaystyle{ {\mathbf B} }[/math] is not square. However, multiplying by [math]\displaystyle{ {\mathbf B}^T }[/math], one obtains (Least Squares solution):

[math]\displaystyle{ {\mathbf B}^T{\mathbf a} -{\mathbf B}^T {\mathbf B}\,{\mathbf M} \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] +\Lambda \; {\mathbf B}^T {\mathbf 1}=0 \qquad \mbox{(15)} }[/math]


where:

[math]\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] ={\mathbf M} ({\mathbf B}^T {\mathbf B})^{-1}{\mathbf B}^T(\Lambda \; {\mathbf 1} + {\mathbf a}) \qquad \mbox{(16)} }[/math]


and then:

[math]\displaystyle{ \begin{array}{r} \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle -1 \right ] \Lambda +\\[0.3cm] + \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle =0 \end{array} \qquad \mbox{(17)} }[/math]


Notes

  1. ^ The tropospheric and ionospheric terms, [math]\displaystyle{ T^j }[/math] and [math]\displaystyle{ \hat{\alpha} \,I^j }[/math], can not be included, because the need to consider the satellite-receiver ray. Off course, after an initial computation of the receiver coordinates, the method could be iterated using the ionospheric and tropospheric corrections to improve the solution.
  2. ^ [math]\displaystyle{ \left \langle{\mathbf a},{\mathbf b}\right \rangle={\mathbf a}^{t} \; {\mathbf M} \; {\mathbf b}= \left[ \begin{array}{c} a_1,a_2,a_3,a_4 \end{array} \right] \left( \begin{array}{cccc} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&-1\\ \end{array} \right) \left[ \begin{array}{c} b_1\\ b_2\\ b_3\\ b_4 \end{array} \right] }[/math]