If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor
MSAS Ground Segment: Difference between revisions
m (Text replace - "|Authors=GMV." to "|Authors=GMV") |
Rui.Pereira (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
{{Article Infobox2 | {{Article Infobox2 | ||
|Category=MSAS | |Category=MSAS | ||
|Authors=GMV | |Authors=GMV | ||
|Level=Basic | |Level=Basic | ||
|YearOfPublication=2011 | |YearOfPublication=2011 | ||
|Logo=GMV | |Logo=GMV | ||
|Title={{PAGENAME}} | |||
}} | }} | ||
The MTSAT Satellite Augmentation System ([[MSAS General Introduction|MSAS]]) is the Japanese [[SBAS General Introduction|Satellite Based Augmentation System (SBAS)]] System:<ref name="MSAS_STATUS_2007">[http://www.oosa.unvienna.org/pdf/icg/2007/icg2/presentations/04_01.pdf MSAS Current Status, Japan Civil Aviation Bureau,] [http://www.oosa.unvienna.org/oosa/SAP/gnss/icg/icg02/presentations.html Second Meeting of the International Committee on Global Navigation Satellite Systems (ICG) organized by the International Space Research Organization, Bangalore, India , 5 - 7 September 2007]</ref> a GPS Augmentation system with the goal of improving its accuracy, integrity, and availability, and that uses the Multifunctional Transport Satellites (MTSAT) owned and operated by the [http://www.mlit.go.jp Japanese Ministry of Land, Infrastructure and Transport] and the [http://www.jma.go.jp Japan Meteorological Agency (JMA).]<ref name=MTSAS_WIKI_1>[http://en.wikipedia.org/wiki/Multi-Functional_Transport_Satellite Multi-Functional Transport Satellite] in [http://en.wikipedia.org/ Wikipedia]</ref> | |||
The MTSAT Satellite Augmentation System ([[ | |||
First tests were accomplished successfully, and MSAS system for aviation use was declared operational in September 27, 2007,<ref name="MSAS_STATUS_2007_2">[http://www.navcen.uscg.gov/pdf/cgsicMeetings/47/%5B24%5Dqzzmsas.pdf QZSS / MSAS Status,] CGSIC –47th Meeting ,Fort Worth, Texas September25, 2007, Satoshi KOGURE, [http://www.jaxa.jp/index_e.html Japan Aerospace Exploration Agency,] QZSS Project Team</ref><ref name="MSAS_GPSW">[http://www.gpsworld.com/survey/perspectives-late-april-2008-7289 Eric Gakstatter, Perspectives - Late April 2008, GPSworld, April 15, 2008]</ref><ref name=MSAS_WIKI_2>[http://en.wikipedia.org/wiki/Multi-functional_Satellite_Augmentation_System Multi-functional Satellite Augmentation System] in [http://en.wikipedia.org/ Wikipedia]</ref> providing a service of horizontal guidance for En-route through Non-Precision Approach.<ref name="MSAS_STATUS_2007"/><ref name="MSAS_STATUS_2007_2"/><ref name="MSAS_STATUS_2008">[http://www.oosa.unvienna.org/pdf/icg/2008/icg3/08-1.pdf Overview of MSAS, Presentation for ICG-3, 2008]</ref> | First tests were accomplished successfully, and MSAS system for aviation use was declared operational in September 27, 2007,<ref name="MSAS_STATUS_2007_2">[http://www.navcen.uscg.gov/pdf/cgsicMeetings/47/%5B24%5Dqzzmsas.pdf QZSS / MSAS Status,] CGSIC –47th Meeting ,Fort Worth, Texas September25, 2007, Satoshi KOGURE, [http://www.jaxa.jp/index_e.html Japan Aerospace Exploration Agency,] QZSS Project Team</ref><ref name="MSAS_GPSW">[http://www.gpsworld.com/survey/perspectives-late-april-2008-7289 Eric Gakstatter, Perspectives - Late April 2008, GPSworld, April 15, 2008]</ref><ref name=MSAS_WIKI_2>[http://en.wikipedia.org/wiki/Multi-functional_Satellite_Augmentation_System Multi-functional Satellite Augmentation System] in [http://en.wikipedia.org/ Wikipedia]</ref> providing a service of horizontal guidance for En-route through Non-Precision Approach.<ref name="MSAS_STATUS_2007"/><ref name="MSAS_STATUS_2007_2"/><ref name="MSAS_STATUS_2008">[http://www.oosa.unvienna.org/pdf/icg/2008/icg3/08-1.pdf Overview of MSAS, Presentation for ICG-3, 2008]</ref> | ||
Line 17: | Line 16: | ||
MSAS works by processing GPS data collected by a network of reference stations to generate the SBAS message which is uploaded to the GEO satellites. The GEO satellites broadcast this information to the user receivers, which compute the aircraft positioning and inform on potential alert messages.<ref name="MSAS_STATUS_2008"/> | MSAS works by processing GPS data collected by a network of reference stations to generate the SBAS message which is uploaded to the GEO satellites. The GEO satellites broadcast this information to the user receivers, which compute the aircraft positioning and inform on potential alert messages.<ref name="MSAS_STATUS_2008"/> | ||
The MSAS system components are typically divided in three different segments: the ground segment, encompassing the system assets located on ground, the [[ | The MSAS system components are typically divided in three different segments: the ground segment, encompassing the system assets located on ground, the [[MSAS Space Segment|space segment]], including the GEO satellites used to broadcast the information to the users, and the [[MSAS User Segment|user segment]], consisting in the users themselves. | ||
The MSAS Ground Segment is composed of four '''Ground Monitor Station (GMS)''' that collect information on the GPS and MTSAT signals. They are placed on Sapporo, Tokyo, Fukuoka and Naha.<ref name="MSAS_STATUS_2008"/> | The MSAS Ground Segment is composed of four '''Ground Monitor Station (GMS)''' that collect information on the GPS and MTSAT signals. They are placed on Sapporo, Tokyo, Fukuoka and Naha.<ref name="MSAS_STATUS_2008"/> |
Revision as of 18:17, 8 November 2011
MSAS | |
---|---|
Title | MSAS Ground Segment |
Author(s) | GMV |
Level | Basic |
Year of Publication | 2011 |
The MTSAT Satellite Augmentation System (MSAS) is the Japanese Satellite Based Augmentation System (SBAS) System:[1] a GPS Augmentation system with the goal of improving its accuracy, integrity, and availability, and that uses the Multifunctional Transport Satellites (MTSAT) owned and operated by the Japanese Ministry of Land, Infrastructure and Transport and the Japan Meteorological Agency (JMA).[2]
First tests were accomplished successfully, and MSAS system for aviation use was declared operational in September 27, 2007,[3][4][5] providing a service of horizontal guidance for En-route through Non-Precision Approach.[1][3][6]
MSAS Ground Segment
MSAS works by processing GPS data collected by a network of reference stations to generate the SBAS message which is uploaded to the GEO satellites. The GEO satellites broadcast this information to the user receivers, which compute the aircraft positioning and inform on potential alert messages.[6]
The MSAS system components are typically divided in three different segments: the ground segment, encompassing the system assets located on ground, the space segment, including the GEO satellites used to broadcast the information to the users, and the user segment, consisting in the users themselves.
The MSAS Ground Segment is composed of four Ground Monitor Station (GMS) that collect information on the GPS and MTSAT signals. They are placed on Sapporo, Tokyo, Fukuoka and Naha.[6]
The GMS stations send their data to two Master Control Station (MCS) in Kobe and Hitachiota, which compute precise differential corrections and integrity bounds and send them to the MTSAT satellites for rebroadcast to the User Segment.[6]
The MSAS Ground Segment is completed with two Monitor and Ranging Station (MRS) in Hawaii (USA) and Canberra (Australia), whose purpose is primarily the correct orbit determination of the MTSAT satellites, and they also work as GMS stations. [6]
Notes
References
- ^ a b MSAS Current Status, Japan Civil Aviation Bureau, Second Meeting of the International Committee on Global Navigation Satellite Systems (ICG) organized by the International Space Research Organization, Bangalore, India , 5 - 7 September 2007
- ^ Multi-Functional Transport Satellite in Wikipedia
- ^ a b QZSS / MSAS Status, CGSIC –47th Meeting ,Fort Worth, Texas September25, 2007, Satoshi KOGURE, Japan Aerospace Exploration Agency, QZSS Project Team
- ^ Eric Gakstatter, Perspectives - Late April 2008, GPSworld, April 15, 2008
- ^ Multi-functional Satellite Augmentation System in Wikipedia
- ^ a b c d e Overview of MSAS, Presentation for ICG-3, 2008