If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor
Bancroft Method: Difference between revisions
mNo edit summary |
Carlos.Lopez (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
{{Article Infobox2 | |||
|Category=Fundamentals | |||
|Title={{PAGENAME}} | |||
|Authors= J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain. | |||
|Level=Advanced | |||
|YearOfPublication=2011 | |||
|Logo=gAGE | |||
}} | |||
The Bancroft method allows to obtain a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location. | The Bancroft method allows to obtain a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location. | ||
==Raising and resolution == | |||
<math> PR^j</math> | |||
<math> R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j </math> | |||
<math> PR^j\equiv R^j +c\,\delta t^j-TGD^j</math> | |||
<math> R^j-D^j\simeq \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c\,\delta t</math> | |||
<math> j=1,2,...,n~~~~ (n \geq 4)</math> | |||
<math> PR^j = \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c \, \delta t</math> | |||
<math> \left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^j} \; \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0</math> | |||
<math> {r}=[x,y,z]^T</math> | |||
<math>\left \langle{a},{b}\right \rangle={a}^{t} \; {M} \; {'b}= | |||
\left[ | |||
\begin{array}{c} | |||
a_1,a_2,a_3,a_4 | |||
\end{array} | |||
\right] | |||
\left( | |||
\begin{array}{cccc} | |||
1&0&0&0\\ | |||
0&1&0&0\\ | |||
0&0&1&0\\ | |||
0&0&0&-1\\ | |||
\end{array} | |||
\right) | |||
\left[ | |||
\begin{array}{c} | |||
b_1\\ | |||
b_2\\ | |||
b_3\\ | |||
b_4 | |||
\end{array} | |||
\right] </math> | |||
<math> | |||
\frac{1}{2} \left \langle | |||
\left[ | |||
\begin{array}{c} | |||
{r}^j\\ | |||
PR^j\\ | |||
\end{array} | |||
\right], | |||
\left[ | |||
\begin{array}{c} | |||
{r}^j\\ | |||
PR^j\\ | |||
\end{array} | |||
\right] | |||
\right \rangle | |||
- | |||
\left \langle | |||
\left[ | |||
\begin{array}{c} | |||
{r}^j\\ | |||
PR^j\\ | |||
\end{array} | |||
\right], | |||
\left[ | |||
\begin{array}{c} | |||
{r}\\ | |||
c\,\delta t\\ | |||
\end{array} | |||
\right] | |||
\right \rangle | |||
+ | |||
\frac{1}{2} \left \langle | |||
\left[ | |||
\begin{array}{c} | |||
{r}\\ | |||
c\,\delta t\\ | |||
\end{array} | |||
\right], | |||
\left[ | |||
\begin{array}{c} | |||
{r}\\ | |||
c\,\delta t\\ | |||
\end{array} | |||
\right] | |||
\right \rangle | |||
=0 | |||
</math> | |||
<math> PR^j</math> | |||
<math> | |||
{B}= | |||
\left( | |||
\begin{array}{cccc} | |||
x^1&y^1&z^1&PR^1\\ | |||
x^2&y^2&z^2&PR^2\\ | |||
x^3&y^3&z^3&PR^3\\ | |||
x^4&y^4&z^4&PR^4\\ | |||
\end{array} | |||
\right) | |||
</math> | |||
<math> | |||
\Lambda= | |||
\frac{1}{2} | |||
\left \langle | |||
\left[ | |||
\begin{array}{c} | |||
{r}\\ | |||
c\,\delta t\\ | |||
\end{array} | |||
\right], | |||
\left[ | |||
\begin{array}{c} | |||
{r}\\ | |||
c\,\delta t\\ | |||
\end{array} | |||
\right] | |||
\right \rangle | |||
\; , | |||
\; | |||
{1}= | |||
\left[ | |||
\begin{array}{c} | |||
1\\ | |||
1\\ | |||
1\\ | |||
1\\ | |||
\end{array} | |||
\right] | |||
\; , | |||
\; | |||
{a}= | |||
\left[ | |||
\begin{array}{c} | |||
a_1\\ | |||
a_2\\ | |||
a_3\\ | |||
a_4\\ | |||
\end{array} | |||
\right] | |||
\; | |||
\mbox{being} | |||
\; | |||
\; | |||
a_j= | |||
\frac{1}{2} | |||
\left \langle | |||
\left[ | |||
\begin{array}{c} | |||
{r}^j\\ | |||
PR^j\\ | |||
\end{array} | |||
\right], | |||
\left[ | |||
\begin{array}{c} | |||
{r}^j\\ | |||
PR^j\\ | |||
\end{array} | |||
\right] | |||
\right \rangle | |||
</math> | |||
<math> | |||
{a} -{B}\,{M} \left[ | |||
\begin{array}{c} | |||
{r}\\ | |||
c\,\delta t\\ | |||
\end{array} | |||
\right] | |||
+\Lambda \; {1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\; | |||
{M}=\left( | |||
\begin{array}{cccc} | |||
1&0&0&0\\ | |||
0&1&0&0\\ | |||
0&0&1&0\\ | |||
0&0&0&-1\\ | |||
\end{array} | |||
\right) | |||
</math> | |||
<math> | |||
\left[ | |||
\begin{array}{c} | |||
{r}\\ | |||
c\,\delta t\\ | |||
\end{array} | |||
\right] | |||
={M} {B}^{-1} (\Lambda \; {1} + {a}) | |||
</math> | |||
<math> | |||
\langle {M}{g},{M}{h} \rangle=\langle {g},{h} \rangle | |||
</math> | |||
<math> | |||
\Lambda= | |||
\frac{1}{2} | |||
\left \langle | |||
\left[ | |||
\begin{array}{c} | |||
{r}\\ | |||
c\,\delta t\\ | |||
\end{array} | |||
\right], | |||
\left[ | |||
\begin{array}{c} | |||
{r}\\ | |||
c\,\delta t\\ | |||
\end{array} | |||
\right] | |||
\right \rangle | |||
</math> | |||
<math> | |||
\left \langle {B}^{-1} {1}, {B}^{-1} {1} \right \rangle \Lambda^2+ 2\left [ \left \langle {B}^{-1} {1}, {B}^{-1} {a} \right \rangle -1 \right ] \Lambda + \left \langle {B}^{-1} {a}, {B}^{-1} {a} \right \rangle =0 | |||
</math> | |||
[[Category:Fundamentals]] | [[Category:Fundamentals]] |
Revision as of 06:19, 31 March 2011
Fundamentals | |
---|---|
Title | Bancroft Method |
Author(s) | J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain. |
Level | Advanced |
Year of Publication | 2011 |
The Bancroft method allows to obtain a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.
Raising and resolution
[math]\displaystyle{ PR^j }[/math]
[math]\displaystyle{ R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j }[/math]
[math]\displaystyle{ PR^j\equiv R^j +c\,\delta t^j-TGD^j }[/math]
[math]\displaystyle{ R^j-D^j\simeq \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c\,\delta t }[/math]
[math]\displaystyle{ j=1,2,...,n~~~~ (n \geq 4) }[/math]
[math]\displaystyle{ PR^j = \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c \, \delta t }[/math]
[math]\displaystyle{ \left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^j} \; \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0 }[/math]
[math]\displaystyle{ {r}=[x,y,z]^T }[/math]
[math]\displaystyle{ \left \langle{a},{b}\right \rangle={a}^{t} \; {M} \; {'b}= \left[ \begin{array}{c} a_1,a_2,a_3,a_4 \end{array} \right] \left( \begin{array}{cccc} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&-1\\ \end{array} \right) \left[ \begin{array}{c} b_1\\ b_2\\ b_3\\ b_4 \end{array} \right] }[/math]
[math]\displaystyle{
\frac{1}{2} \left \langle
\left[
\begin{array}{c}
{r}^j\\
PR^j\\
\end{array}
\right],
\left[
\begin{array}{c}
{r}^j\\
PR^j\\
\end{array}
\right]
\right \rangle
-
\left \langle
\left[
\begin{array}{c}
{r}^j\\
PR^j\\
\end{array}
\right],
\left[
\begin{array}{c}
{r}\\
c\,\delta t\\
\end{array}
\right]
\right \rangle
+
\frac{1}{2} \left \langle
\left[
\begin{array}{c}
{r}\\
c\,\delta t\\
\end{array}
\right],
\left[
\begin{array}{c}
{r}\\
c\,\delta t\\
\end{array}
\right]
\right \rangle
=0
}[/math]
[math]\displaystyle{ PR^j }[/math]
[math]\displaystyle{ {B}= \left( \begin{array}{cccc} x^1&y^1&z^1&PR^1\\ x^2&y^2&z^2&PR^2\\ x^3&y^3&z^3&PR^3\\ x^4&y^4&z^4&PR^4\\ \end{array} \right) }[/math]
[math]\displaystyle{ \Lambda= \frac{1}{2} \left \langle \left[ \begin{array}{c} {r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {r}\\ c\,\delta t\\ \end{array} \right] \right \rangle \; , \; {1}= \left[ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ \end{array} \right] \; , \; {a}= \left[ \begin{array}{c} a_1\\ a_2\\ a_3\\ a_4\\ \end{array} \right] \; \mbox{being} \; \; a_j= \frac{1}{2} \left \langle \left[ \begin{array}{c} {r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {r}^j\\ PR^j\\ \end{array} \right] \right \rangle }[/math]
[math]\displaystyle{ {a} -{B}\,{M} \left[ \begin{array}{c} {r}\\ c\,\delta t\\ \end{array} \right] +\Lambda \; {1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\; {M}=\left( \begin{array}{cccc} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&-1\\ \end{array} \right) }[/math]
[math]\displaystyle{ \left[ \begin{array}{c} {r}\\ c\,\delta t\\ \end{array} \right] ={M} {B}^{-1} (\Lambda \; {1} + {a}) }[/math]
[math]\displaystyle{
\langle {M}{g},{M}{h} \rangle=\langle {g},{h} \rangle
}[/math]
[math]\displaystyle{
\Lambda=
\frac{1}{2}
\left \langle
\left[
\begin{array}{c}
{r}\\
c\,\delta t\\
\end{array}
\right],
\left[
\begin{array}{c}
{r}\\
c\,\delta t\\
\end{array}
\right]
\right \rangle
}[/math]
[math]\displaystyle{ \left \langle {B}^{-1} {1}, {B}^{-1} {1} \right \rangle \Lambda^2+ 2\left [ \left \langle {B}^{-1} {1}, {B}^{-1} {a} \right \rangle -1 \right ] \Lambda + \left \langle {B}^{-1} {a}, {B}^{-1} {a} \right \rangle =0 }[/math]