If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

Bancroft Method: Difference between revisions

From Navipedia
Jump to navigation Jump to search
mNo edit summary
No edit summary
Line 1: Line 1:
{{Article Infobox2
|Category=Fundamentals
|Title={{PAGENAME}}
|Authors= J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain.
|Level=Advanced
|YearOfPublication=2011
|Logo=gAGE
}}
The Bancroft method allows to obtain a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.
The Bancroft method allows to obtain a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.


insert Appendix D here.
==Raising and resolution ==
 
<math> PR^j</math>
 
 
<math> R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j </math>
 
 
<math> PR^j\equiv R^j +c\,\delta t^j-TGD^j</math>
 
 
<math> R^j-D^j\simeq \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c\,\delta t</math>
<math> j=1,2,...,n~~~~ (n \geq 4)</math>
 
<math> PR^j = \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c \, \delta t</math>
 
<math> \left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^j} \;  \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0</math>
 
<math> {r}=[x,y,z]^T</math>
 
<math>\left \langle{a},{b}\right \rangle={a}^{t} \; {M} \; {'b}=
\left[
\begin{array}{c}
a_1,a_2,a_3,a_4
\end{array}
\right]
\left(
\begin{array}{cccc}
1&0&0&0\\
0&1&0&0\\
0&0&1&0\\
0&0&0&-1\\
\end{array}
\right)
\left[
\begin{array}{c}
b_1\\
b_2\\
b_3\\
b_4
\end{array}
\right] </math>
 
 
<math>
\frac{1}{2} \left  \langle
\left[
\begin{array}{c}
{r}^j\\
PR^j\\
\end{array}
\right],
\left[
\begin{array}{c}
{r}^j\\
PR^j\\
\end{array}
\right]
\right \rangle
-
\left  \langle
\left[
\begin{array}{c}
{r}^j\\
PR^j\\
\end{array}
\right],
\left[
\begin{array}{c}
{r}\\
c\,\delta t\\
\end{array}
\right]
\right \rangle
+
\frac{1}{2} \left  \langle
\left[
\begin{array}{c}
{r}\\
c\,\delta t\\
\end{array}
\right],
\left[
\begin{array}{c}
{r}\\
c\,\delta t\\
\end{array}
\right]
\right \rangle
=0
</math>
 
<math> PR^j</math>
 
<math>
{B}=
\left(
\begin{array}{cccc}
x^1&y^1&z^1&PR^1\\
x^2&y^2&z^2&PR^2\\
x^3&y^3&z^3&PR^3\\
x^4&y^4&z^4&PR^4\\
\end{array}
\right)
</math>
 
<math>
\Lambda=
\frac{1}{2}
\left  \langle
\left[
\begin{array}{c}
{r}\\
c\,\delta t\\
\end{array}
\right],
\left[
\begin{array}{c}
{r}\\
c\,\delta t\\
\end{array}
\right]
\right \rangle
\; ,
\;
{1}=
\left[
\begin{array}{c}
1\\
1\\
1\\
1\\
\end{array}
\right]
\; ,
\;
{a}=
\left[
\begin{array}{c}
a_1\\
a_2\\
a_3\\
a_4\\
\end{array}
\right]
\;
\mbox{being}
\;
\;
a_j=
\frac{1}{2}
\left  \langle
\left[
\begin{array}{c}
{r}^j\\
PR^j\\
\end{array}
\right],
\left[
\begin{array}{c}
{r}^j\\
PR^j\\
\end{array}
\right]
\right \rangle
</math>
 
<math>
{a} -{B}\,{M} \left[
\begin{array}{c}
{r}\\
c\,\delta t\\
\end{array}
\right]
+\Lambda \; {1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\;
{M}=\left(
\begin{array}{cccc}
1&0&0&0\\
0&1&0&0\\
0&0&1&0\\
0&0&0&-1\\
\end{array}
\right)
</math>
 
<math>
\left[
\begin{array}{c}
{r}\\
c\,\delta t\\
\end{array}
\right]
={M} {B}^{-1} (\Lambda \; {1} + {a})
</math>
 
 
<math>
\langle {M}{g},{M}{h} \rangle=\langle {g},{h} \rangle
</math>
 
 
<math>
\Lambda=
\frac{1}{2}
\left  \langle
\left[
\begin{array}{c}
{r}\\
c\,\delta t\\
\end{array}
\right],
\left[
\begin{array}{c}
{r}\\
c\,\delta t\\
\end{array}
\right]
\right \rangle
</math>
 
<math>
\left \langle {B}^{-1} {1}, {B}^{-1} {1} \right \rangle \Lambda^2+ 2\left [  \left \langle {B}^{-1} {1}, {B}^{-1} {a} \right \rangle -1 \right ] \Lambda +  \left \langle {B}^{-1} {a}, {B}^{-1} {a} \right \rangle =0
</math>


[[Category:Fundamentals]]
[[Category:Fundamentals]]

Revision as of 06:19, 31 March 2011


FundamentalsFundamentals
Title Bancroft Method
Author(s) J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain.
Level Advanced
Year of Publication 2011
Logo gAGE.png


The Bancroft method allows to obtain a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.

Raising and resolution

[math]\displaystyle{ PR^j }[/math]


[math]\displaystyle{ R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j }[/math]


[math]\displaystyle{ PR^j\equiv R^j +c\,\delta t^j-TGD^j }[/math]


[math]\displaystyle{ R^j-D^j\simeq \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c\,\delta t }[/math] [math]\displaystyle{ j=1,2,...,n~~~~ (n \geq 4) }[/math]

[math]\displaystyle{ PR^j = \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c \, \delta t }[/math]

[math]\displaystyle{ \left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^j} \; \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0 }[/math]

[math]\displaystyle{ {r}=[x,y,z]^T }[/math]

[math]\displaystyle{ \left \langle{a},{b}\right \rangle={a}^{t} \; {M} \; {'b}= \left[ \begin{array}{c} a_1,a_2,a_3,a_4 \end{array} \right] \left( \begin{array}{cccc} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&-1\\ \end{array} \right) \left[ \begin{array}{c} b_1\\ b_2\\ b_3\\ b_4 \end{array} \right] }[/math]


[math]\displaystyle{ \frac{1}{2} \left \langle \left[ \begin{array}{c} {r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {r}^j\\ PR^j\\ \end{array} \right] \right \rangle - \left \langle \left[ \begin{array}{c} {r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {r}\\ c\,\delta t\\ \end{array} \right] \right \rangle + \frac{1}{2} \left \langle \left[ \begin{array}{c} {r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {r}\\ c\,\delta t\\ \end{array} \right] \right \rangle =0 }[/math]

[math]\displaystyle{ PR^j }[/math]

[math]\displaystyle{ {B}= \left( \begin{array}{cccc} x^1&y^1&z^1&PR^1\\ x^2&y^2&z^2&PR^2\\ x^3&y^3&z^3&PR^3\\ x^4&y^4&z^4&PR^4\\ \end{array} \right) }[/math]

[math]\displaystyle{ \Lambda= \frac{1}{2} \left \langle \left[ \begin{array}{c} {r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {r}\\ c\,\delta t\\ \end{array} \right] \right \rangle \; , \; {1}= \left[ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ \end{array} \right] \; , \; {a}= \left[ \begin{array}{c} a_1\\ a_2\\ a_3\\ a_4\\ \end{array} \right] \; \mbox{being} \; \; a_j= \frac{1}{2} \left \langle \left[ \begin{array}{c} {r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {r}^j\\ PR^j\\ \end{array} \right] \right \rangle }[/math]

[math]\displaystyle{ {a} -{B}\,{M} \left[ \begin{array}{c} {r}\\ c\,\delta t\\ \end{array} \right] +\Lambda \; {1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\; {M}=\left( \begin{array}{cccc} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&-1\\ \end{array} \right) }[/math]

[math]\displaystyle{ \left[ \begin{array}{c} {r}\\ c\,\delta t\\ \end{array} \right] ={M} {B}^{-1} (\Lambda \; {1} + {a}) }[/math]


[math]\displaystyle{ \langle {M}{g},{M}{h} \rangle=\langle {g},{h} \rangle }[/math]


[math]\displaystyle{ \Lambda= \frac{1}{2} \left \langle \left[ \begin{array}{c} {r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {r}\\ c\,\delta t\\ \end{array} \right] \right \rangle }[/math]

[math]\displaystyle{ \left \langle {B}^{-1} {1}, {B}^{-1} {1} \right \rangle \Lambda^2+ 2\left [ \left \langle {B}^{-1} {1}, {B}^{-1} {a} \right \rangle -1 \right ] \Lambda + \left \langle {B}^{-1} {a}, {B}^{-1} {a} \right \rangle =0 }[/math]