If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

Galileo Architecture: Difference between revisions

From Navipedia
Jump to navigation Jump to search
m (moved GALILEO Architecture to Galileo Architecture over redirect: Galileo is a name and not an acronym.)
No edit summary
 
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Article Infobox2
|Category=GALILEO
|Editors=GMV
|Level=Basic
|YearOfPublication=2011
|Title={{PAGENAME}}
}}
The [[GALILEO General Introduction|Galileo]] System will be an independent, global, European-controlled, satellite-based navigation system and will provide a number of guaranteed services to users equipped with Galileo-compatible receivers.


To ensure GALILEO services, a specific architecture is deployed, that will consist of 30 satellites, to be deployed in a staggered approach, and the associated ground infrastructure.<ref name="EsaGalileoweb">[http://www.esa.int/esaNA/galileo.html ESA Galileo web page]</ref> The Galileo system is divided into three major segments: [[GALILEO Space Segment|Space Segment]], [[GALILEO Ground Segment|Ground Segment]] and [[GALILEO User Segment|User Segment]].  
The [[GALILEO General Introduction|Galileo]] System is an independent, global, European-controlled, satellite-based navigation system and will provide a number of guaranteed services to users equipped with Galileo-compatible receivers once it achieves its Full Operational Capability foreseen for 2020. From 2016, Galileo moved from a testing phase to the provision of life services thanks to the Galileo Initial Services declaration. 
 
To ensure GALILEO services, a specific architecture is deployed, that consists of 30 satellites, to be deployed in a staggered approach, and the associated ground infrastructure.<ref name="Galileo-OS-SDD">[https://www.gsc-europa.eu/system/files/galileo_documents/Galileo-OS-SDD.pdf Galileo Open Service - Service Definition Document]</ref> The Galileo system is divided into three major segments: [[GALILEO Space Segment|Space Segment]], [[GALILEO Ground Segment|Ground Segment]] and [[GALILEO User Segment|User Segment]].  


==Introduction==
==Introduction==
[[File:GalileoFOCArchitecture.JPG|300px|Galileo Architecture|thumb]]
[[File:GalileoFOCArchitecture.JPG|300px|Galileo Architecture|thumb]]


The Galileo infrastructure will be composed of:<ref name="GNSS-Book ">J. Sanz Subirana, JM. Juan Zornoza and M. Hernández-Pajares, ''Global Navigation Satellite Systems: Volume I: Fundamentals and Algorithms''</ref>
The Galileo infrastructure is composed of:
* A constellation of 30 satellites in Medium-Earth Orbit (MEO). Each satellite will contain a navigation payload and a search and rescue transponder;  
* a constellation of 30 satellites (including 6 spares) in Medium-Earth Orbit (MEO). Each satellite contains a navigation payload and a search and rescue transponder;  
* a global network of Galileo Sensor Stations (GSS) providing coverage for clock synchronisation and orbit measurements;  
* a global network of Galileo Sensor Stations (GSS) providing coverage for clock synchronisation and orbit measurements;  
* two Control Centers and two Launch Early Operations (LEOP) Centers;  
* two Control Centres;  
* a network of Mission Uplink stations;  
* a network of Mission Uplink stations;  
* several Telemetry, Tracking and Control (TT&C) stations.  
* Telemetry, Tracking and Control (TT&C) stations.
* additional core infrastructure to service which support the provision of the Galileo service.


This infrastructure is organized in two segments, the [[GALILEO Space Segment|Space Segment]] and the [[GALILEO Ground Segment|Ground Segment]], to be complemented by the users receivers, which compose the [[GALILEO User Segment|User Segment]].
This infrastructure is organized in two segments, the [[GALILEO Space Segment|Space Segment]] and the [[GALILEO Ground Segment|Ground Segment]], to be complemented by the user receivers, which compose the [[GALILEO User Segment|User Segment]].


==GALILEO Space Segment==
==GALILEO Space Segment==
[[File:Galileo Space Segment.jpg|250px|Galileo Space Segment|left|thumb]]
[[File:Galileo Space Segment.jpg|250px|Galileo Space Segment|left|thumb]]
The main functions of the [[GALILEO Space Segment|Galileo Space Segment]] are to generate and transmit code and carrier phase signals with a specific [[GALILEO Signal Plan|Galileo signal structure]], and to store and retransmit the navigation message sent by the [[GALILEO Ground Segment|Control Segment]]. These transmissions are controlled by highly stable atomic clocks on board the satellites.
The main functions of the [[GALILEO Space Segment|Galileo Space Segment]] are to generate and transmit code and carrier phase signals with a specific [[GALILEO Signal Plan|Galileo signal structure]], and to store and retransmit the navigation message sent by the [[GALILEO Ground Segment|Control Segment]]. These transmissions are controlled by highly stable atomic clocks on board the satellites.  
 
When Galileo is fully operational, there will be 30 satellites in Medium Earth Orbit (MEO) at an altitude of 23,222 kilometres. The satellites will occupy each of three orbital planes inclined at an angle of 56° with respect to the equator. The satellites will be spread evenly around each plane and will take about 14 hours to orbit the Earth. Each orbital plane includes 8 satellites uniformly distributed within the plane. The angular shift between satellites in two adjacent planes is 15º.
One satellite in each plane will be a spare, on stand-by should any operational satellite fail. The full constellation includes 6 spare satellites, resulting a walker 24/3/1 constellation. These spare satellites can be activated and allocated to a given operational slot depending on maintenance or service evolution activities.
The constellation geometry repetition period corresponding to the nominal orbital parameters is 10 days (corresponding to 17 orbital revolutions). This means that for any fixed Galileo user, the local satellite geometry at a given instant is repeated every 10 sideral days.
In the following table are shown the Nominal Value of the different Reference Orbit Parameters:


When Galileo is fully operational, there will be 30 satellites in Medium Earth Orbit (MEO) at an altitude of 23,222 kilometers. The satellites will occupy each of three orbital planes inclined at an angle of 56° to the equator. The satellites will be spread evenly around each plane and will take about 14 hours to orbit the Earth. One satellite in each plane will be a spare, on stand-by should any operational satellite fail.<ref name="EsaGalileoweb"/>
{| class="wikitable" align="center"
|+align="bottom" |''Galileo Reference Orbit Parameters''
|-
! Reference Orbit Parameter
! Nominal Value
|- align="center"
| Orbit semi-major axis, m
| 29599801
|- align="center"
| Orbit eccentricity
| 1E-07
|- align="center"
| Orbit inclination, deg
|  56.0
|- align="center"
| Argument of Perigee, deg
| 0.0
|- align="center"
|}


Highly accurate atomic clocks are installed on these satellites. Each of the 30 satellites in the Galileo system will have two of each type of clock on board, a rubidium and a hydrogen maser clock. The frequency is at around 6 GHz for the rubidium clock and at around 1.4 GHz for the hydrogen clock. The Galileo system uses the clock frequency as a very stable reference by which other units can generate the accurate signals that the Galileo satellites will broadcast. The broadcast signals will also provide a reference by which the less stable user receiver clocks can continuously reset their time.
 
Highly accurate atomic clocks are installed on these satellites. Each of the 30 satellites in the Galileo system has two of each type of clock on board, a rubidium and a hydrogen maser clock. The frequency is at around 6 GHz for the rubidium clock and at around 1.4 GHz for the hydrogen clock. The Galileo system uses the clock frequency as a very stable reference by which other units can generate the accurate signals that the Galileo satellites will broadcast. The broadcast signals also provide a reference by which the less stable user receiver clocks can continuously reset their time.


The satellites are deployed gradually according to the [[GALILEO_Future_and_Evolutions|Galileo Program schedule]].
The satellites are deployed gradually according to the [[GALILEO_Future_and_Evolutions|Galileo Program schedule]].


==GALILEO Ground Segment==
==GALILEO Ground Segment==
The [[GALILEO Ground Segment|Galileo Ground Segment]]  is the responsible for the proper operation of the GNSS system. Its basic functions are:
The [[GALILEO Ground Segment|Galileo Ground Segment]]  is the responsible for the proper operation of the GNSS system. It comprises two control centres, a global network of transmitting and receiving stations implementing monitoring and control functions and a series of service facilities which support the provision of the Galileo services<ref name="Galileo-OS-SDD"></ref>.
* To control and maintain the status and configuration of the satellite constellation.
* To predict ephemeris and satellite clock evolution.
* To keep the corresponding GNSS time scale (through atomic clocks).
* To update the navigation messages for all the satellites.


The [[GALILEO Ground Segment|Galileo Ground Segment]] constitutes the major system element controlling the entire constellation, the navigation system facilities and the dissemination services. It is composed of two Ground Control Centers (GCC), five Telemetry, Tracking and Control (TT&C) stations, nine Mission Uplink Stations (ULS), a global network of Galileo Sensor Stations (GSS)<ref>Official Journal of the European Union of 23 of February 2012 (2012/117/EU), [http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:052:0028:0031:EN:PDF Annex 1]</ref> and the European [[GNSS Service Centre]] (GSC)<ref>http://www.gsc-europa.eu/</ref>.


The core of the GALILEO ground segment are the two Galileo Control Centres (GCC). Each control centre manages ''control'' functions supported by a '''Galileo Control Segment (GCS)''' and ''mission'' functions, supported by a dedicated '''Galileo Mission Segment (GMS)'''. The GCS handles spacecraft housekeeping and constellation maintenance while the GMS handles navigation system control. The GCS and GMS interfaces the satellites with a worldwide ground station network implementing control and monitoring functions<ref name="Galileo-OS-SDD"/><ref name="Galileo_System">[https://www.gsc-europa.eu/galileo/system Galileo System at European Galileo Service Centre website]</ref>.


The Galileo Ground Segment is decomposed into the Galileo Control System and the Galileo Mission System. The Galileo Control System (GCS), as the responsible for satellite constellation control and management of Galileo satellites, provides the telemetry, telecommand and control function for the whole Galileo satellite constellation. The Galileo Mission System (GMS) is responsible for the determination and uplink of navigation and integrity data messages needed to provide the navigation and UTC time transfer service.
The '''Galileo Control Segment (GCS)''' is responsible for a large range of functions to support satellite constellation control and management of Galileo satellites. The scope of this functionality includes control and monitoring of the satellites and payload, planning and automation functions that allow safe and correct operations to take place, and the support of payload related operations by means of Telemetry Tracking and Control (TT&C) stations links. The GCS provides the telemetry, telecommand and control function for the whole Galileo satellite constellation. Its functional elements are deployed within the Galileo Control Centres (GCC) and the six globally distributed Telemetry Tracking and Control (TT&C) stations. To manage this, the GCS uses the TT&C stations to communicate with each satellite on a scheme combining regular, scheduled contacts, long-term test campaigns and contingency contacts.
 
The '''Galileo Mission Segment (GMS)''' consists of facilities deployed in the two Galileo Control Centres (GCCs) plus a series of Mission Up-Link Stations (ULS) and Galileo Sensor Stations (GSS) deployed at remote sites located around the world. The GMS is responsible for the determination and uplink of navigation data messages needed to provide the navigation and timing data. For this purpose, it uses a global network of Galileo Sensor Stations (GSS)<ref name="Galileo-OS-SDD"/><ref name="Galileo_System"/> to monitor the navigation signals of all satellites on a continuous basis, through a comprehensive communications network using commercial satellites as well as cable connections in which each link is duplicated for redundancy.


==GALILEO User Segment==
==GALILEO User Segment==
The  [[GALILEO User Segment|Galileo User Segment]] is composed by [[GALILEO Receivers|Galileo receivers]]. Their main function is to receive Galileo signals, determine pseudoranges (and other observables), and solve the navigation equations in order to obtain their coordinates and provide a very accurate time.
The  [[GALILEO User Segment|Galileo User Segment]] is composed by [[GALILEO Receivers|Galileo receivers]]. Their main function is to receive Galileo signals, determine pseudoranges (and other observables), and solve the navigation equations in order to obtain their coordinates and provide a very accurate time.
Three receiver development activities have been initiated within the Galileo programme, addressing the different needs of the system development process and covering the range of signals and services that will be offered. Activities in receiver development are in the following areas:<ref name="EsaGalileoweb"/>
# test user segment;
# receivers for the signals transmitted by the first experimental satellites;
# receivers for the Galileo receiver chain.


==Notes==
==Notes==
<references group="footnotes"/>
<references group="footnotes"/>
==References==
==References==
<references/>
<references/>{{Article Infobox2
|Category=GALILEO
|Editors=GMV
|Level=Basic
|YearOfPublication=2011
|Logo=GMV
|Title={{PAGENAME}}
}}


[[Category:GALILEO|Architecture]]
[[Category:GALILEO|Architecture]]
[[Category:GALILEO Architecture]]
[[Category:GALILEO Architecture]]
[[Category:GALILEO Ground Segment]]
[[Category:GALILEO Ground Segment]]

Latest revision as of 07:19, 14 December 2020

The Galileo System is an independent, global, European-controlled, satellite-based navigation system and will provide a number of guaranteed services to users equipped with Galileo-compatible receivers once it achieves its Full Operational Capability foreseen for 2020. From 2016, Galileo moved from a testing phase to the provision of life services thanks to the Galileo Initial Services declaration.

To ensure GALILEO services, a specific architecture is deployed, that consists of 30 satellites, to be deployed in a staggered approach, and the associated ground infrastructure.[1] The Galileo system is divided into three major segments: Space Segment, Ground Segment and User Segment.

Introduction

Galileo Architecture

The Galileo infrastructure is composed of:

  • a constellation of 30 satellites (including 6 spares) in Medium-Earth Orbit (MEO). Each satellite contains a navigation payload and a search and rescue transponder;
  • a global network of Galileo Sensor Stations (GSS) providing coverage for clock synchronisation and orbit measurements;
  • two Control Centres;
  • a network of Mission Uplink stations;
  • Telemetry, Tracking and Control (TT&C) stations.
  • additional core infrastructure to service which support the provision of the Galileo service.

This infrastructure is organized in two segments, the Space Segment and the Ground Segment, to be complemented by the user receivers, which compose the User Segment.

GALILEO Space Segment

Galileo Space Segment

The main functions of the Galileo Space Segment are to generate and transmit code and carrier phase signals with a specific Galileo signal structure, and to store and retransmit the navigation message sent by the Control Segment. These transmissions are controlled by highly stable atomic clocks on board the satellites.

When Galileo is fully operational, there will be 30 satellites in Medium Earth Orbit (MEO) at an altitude of 23,222 kilometres. The satellites will occupy each of three orbital planes inclined at an angle of 56° with respect to the equator. The satellites will be spread evenly around each plane and will take about 14 hours to orbit the Earth. Each orbital plane includes 8 satellites uniformly distributed within the plane. The angular shift between satellites in two adjacent planes is 15º. One satellite in each plane will be a spare, on stand-by should any operational satellite fail. The full constellation includes 6 spare satellites, resulting a walker 24/3/1 constellation. These spare satellites can be activated and allocated to a given operational slot depending on maintenance or service evolution activities. The constellation geometry repetition period corresponding to the nominal orbital parameters is 10 days (corresponding to 17 orbital revolutions). This means that for any fixed Galileo user, the local satellite geometry at a given instant is repeated every 10 sideral days. In the following table are shown the Nominal Value of the different Reference Orbit Parameters:

Galileo Reference Orbit Parameters
Reference Orbit Parameter Nominal Value
Orbit semi-major axis, m 29599801
Orbit eccentricity 1E-07
Orbit inclination, deg 56.0
Argument of Perigee, deg 0.0


Highly accurate atomic clocks are installed on these satellites. Each of the 30 satellites in the Galileo system has two of each type of clock on board, a rubidium and a hydrogen maser clock. The frequency is at around 6 GHz for the rubidium clock and at around 1.4 GHz for the hydrogen clock. The Galileo system uses the clock frequency as a very stable reference by which other units can generate the accurate signals that the Galileo satellites will broadcast. The broadcast signals also provide a reference by which the less stable user receiver clocks can continuously reset their time.

The satellites are deployed gradually according to the Galileo Program schedule.

GALILEO Ground Segment

The Galileo Ground Segment is the responsible for the proper operation of the GNSS system. It comprises two control centres, a global network of transmitting and receiving stations implementing monitoring and control functions and a series of service facilities which support the provision of the Galileo services[1].


The core of the GALILEO ground segment are the two Galileo Control Centres (GCC). Each control centre manages control functions supported by a Galileo Control Segment (GCS) and mission functions, supported by a dedicated Galileo Mission Segment (GMS). The GCS handles spacecraft housekeeping and constellation maintenance while the GMS handles navigation system control. The GCS and GMS interfaces the satellites with a worldwide ground station network implementing control and monitoring functions[1][2].

The Galileo Control Segment (GCS) is responsible for a large range of functions to support satellite constellation control and management of Galileo satellites. The scope of this functionality includes control and monitoring of the satellites and payload, planning and automation functions that allow safe and correct operations to take place, and the support of payload related operations by means of Telemetry Tracking and Control (TT&C) stations links. The GCS provides the telemetry, telecommand and control function for the whole Galileo satellite constellation. Its functional elements are deployed within the Galileo Control Centres (GCC) and the six globally distributed Telemetry Tracking and Control (TT&C) stations. To manage this, the GCS uses the TT&C stations to communicate with each satellite on a scheme combining regular, scheduled contacts, long-term test campaigns and contingency contacts.

The Galileo Mission Segment (GMS) consists of facilities deployed in the two Galileo Control Centres (GCCs) plus a series of Mission Up-Link Stations (ULS) and Galileo Sensor Stations (GSS) deployed at remote sites located around the world. The GMS is responsible for the determination and uplink of navigation data messages needed to provide the navigation and timing data. For this purpose, it uses a global network of Galileo Sensor Stations (GSS)[1][2] to monitor the navigation signals of all satellites on a continuous basis, through a comprehensive communications network using commercial satellites as well as cable connections in which each link is duplicated for redundancy.

GALILEO User Segment

The Galileo User Segment is composed by Galileo receivers. Their main function is to receive Galileo signals, determine pseudoranges (and other observables), and solve the navigation equations in order to obtain their coordinates and provide a very accurate time.

Notes

References


GALILEOGALILEO
Title Galileo Architecture
Edited by GMV
Level Basic
Year of Publication 2011
Logo GMV.png