If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

Bancroft Method: Difference between revisions

From Navipedia
Jump to navigation Jump to search
No edit summary
mNo edit summary
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Article Infobox2
{{Article Infobox2
|Category=Fundamentals
|Category=Fundamentals
|Title={{PAGENAME}}
|Authors=J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
|Authors= J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain.
|Level=Advanced
|Level=Advanced
|YearOfPublication=2011
|YearOfPublication=2011
|Logo=gAGE
|Title={{PAGENAME}}
}}
}}
The Bancroft method allows to obtain a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.
The Bancroft method allows obtaining a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.
 


==Raising and resolution==
==Raising and resolution==
Line 13: Line 13:
Let <math>PR^j</math> the prefit-residual of satellite-<math>j</math>, computed from equation (1)
Let <math>PR^j</math> the prefit-residual of satellite-<math>j</math>, computed from equation (1)


<math>
::<math>
R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j
R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j
\qquad \mbox{(1)}</math>
\qquad \mbox{(1)}</math>




after removing all model terms  not needing the a priory knowledge of the receiver position:<ref group=“footnotes”>The tropospheric and ionospheric terms,  <math>T^j</math> and <math>\hat{\alpha} \,I^j</math>, can not be included, because the need to consider the satellite-receiver ray. Off course, after an initial computation of the receiver coordinates, the method could be iterated using the ionospheric and tropospheric corrections to improve the solution.</ref>
after removing all model terms  not needing the a priory knowledge of the receiver position:<ref group="footnotes">The tropospheric and ionospheric terms,  <math>T^j</math> and <math>\hat{\alpha} \,I^j</math>, can not be included, because the need to consider the satellite-receiver ray. Off course, after an initial computation of the receiver coordinates, the method could be iterated using the ionospheric and tropospheric corrections to improve the solution.</ref>


<math>
::<math>
PR^j\equiv R^j +c\,\delta t^j-TGD^j
PR^j\equiv R^j +c\,\delta t^j-TGD^j
\qquad \mbox{(2)}</math>
\qquad \mbox{(2)}</math>




Thence, neglecting the tropospheric and ionospheric terms, as well as the multipath and receiver noise, the equation (3)
Thence, neglecting the tropospheric and ionospheric terms, as well as the multipath and receiver noise, the equation (3)


<math>
::<math>
\begin{array}{r}
\begin{array}{r}
R^j-D^j\simeq \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c\,\delta t\\[0.3cm]
R^j-D^j\simeq \sqrt{(x^j-x)^2+(y^j-y)^2+(z^j-z)^2}+c\,\delta t\\[0.3cm]
j=1,2,...,n~~~~ (n \geq 4)\\
j=1,2,...,n~~~~ (n \geq 4)\\
\end{array}
\end{array}
\qquad \mbox{(3)}</math>
\qquad \mbox{(3)}</math>


can be written as:
can be written as:


<math>
::<math>
PR^j = \sqrt{(x-x^j)^2+(y-y^j)^2+(z-z^j)^2}+c \, \delta t
PR^j = \sqrt{(x^j-x)^2+(y^j-y)^2+(z^j-z)^2}+c \, \delta t
\qquad \mbox{(4)}</math>
\qquad \mbox{(4)}</math>




Developing the previous equation (4), it follows:
Developing the previous equation (4), it follows:


<math>\left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^j} \;  \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0</math>
::<math>\left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^jc\,\delta t} \;  \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0 \qquad \mbox{(5)}</math>




Then, calling <math>{\mathbf r}=[x,y,z]^T</math> and considering the inner product of
Then, calling <math>{\mathbf r}=[x,y,z]^T</math> and considering the inner product of
Lorentz <ref group=“footnotes”>
Lorentz <ref group="footnotes">
<math>
<math>
\left \langle{\mathbf a},{\mathbf b}\right \rangle={\mathbf a}^{t} \; {\mathbf M} \; {\mathbf b}=
\left \langle{\mathbf a},{\mathbf b}\right \rangle={\mathbf a}^{t} \; {\mathbf M} \; {\mathbf b}=
Line 74: Line 75:
</math>
</math>
</ref>
</ref>
the previous equation can be expressed in a more compact way as:
the previous equation (5) can be expressed in a more compact way as:


<math>\frac{1}{2} \left  \langle
::<math>\frac{1}{2} \left  \langle
\left[
\left[
\begin{array}{c}
\begin{array}{c}
Line 121: Line 122:
\right \rangle
\right \rangle
=0
=0
</math>
\qquad \mbox{(6)}</math>
 
 


The former equation can be raised for every satellite (or prefit-residual <math>PR^j</math>).
The former equation can be raised for every satellite (or prefit-residual <math>PR^j</math>).




If four measurements are available, thence, the following matrix can be written, containing all the available information on satellite coordinates and
If four measurements are available, thence, the following matrix can be written, containing all the available information on satellite coordinates and pseudoranges (every row corresponds to a satellite):
pseudoranges (every row corresponds to a satellite):


<math>
::<math>
{\mathbf B}=
{\mathbf B}=
\left(
\left(
Line 139: Line 141:
\end{array}
\end{array}
\right)
\right)
\qquad \mbox{(5)}</math>
\qquad \mbox{(7)}</math>




Then, calling:
Then, calling:


<math>\Lambda=
::<math>\Lambda=
\frac{1}{2}
\frac{1}{2}
  \left  \langle
  \left  \langle
Line 202: Line 204:
\right]
\right]
\right \rangle
\right \rangle
</math>
\qquad \mbox{(8)}</math>
 




The four equations for pseudorange can be expressed as:
The four equations for pseudorange can be expressed as:


<math>{\mathbf a} -{\mathbf B}\,{\mathbf M} \left[
::<math>{\mathbf a} -{\mathbf B}\,{\mathbf M} \left[
\begin{array}{c}
\begin{array}{c}
{\mathbf r}\\
{\mathbf r}\\
Line 222: Line 225:
\end{array}
\end{array}
\right)
\right)
</math>
\qquad \mbox{(9)}</math>




from where:
from where:


<math>
::<math>
\left[
\left[
\begin{array}{c}
\begin{array}{c}
Line 235: Line 238:
\right]
\right]
={\mathbf M} {\mathbf B}^{-1} (\Lambda \; {\mathbf 1} + {\mathbf a})
={\mathbf M} {\mathbf B}^{-1} (\Lambda \; {\mathbf 1} + {\mathbf a})
\qquad \mbox{(6)}</math>
\qquad \mbox{(10)}</math>
 
 
 
Then, taking into account the following equality
 
:: <math>\langle {\mathbf M}{\mathbf g},{\mathbf M}{\mathbf h} \rangle=\langle {\mathbf g},{\mathbf h} \rangle \qquad \mbox{(11)}</math>,
 


and that


Then, taking into account the following equality <math>\langle {\mathbf M}{\mathbf g},{\mathbf M}{\mathbf h} \rangle=\langle {\mathbf g},{\mathbf h} \rangle</math>, and
::<math>
that
<math>
\Lambda=
\Lambda=
\frac{1}{2}
\frac{1}{2}
Line 257: Line 266:
\right]
\right]
\right \rangle
\right \rangle
</math>,  from the former expression, one obtains:
\qquad \mbox{(12)}</math>,   


<math>
 
from the former expression (10), one obtains:
 
::<math>
\left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf 1} \right \rangle \Lambda^2+ 2\left [  \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf a} \right \rangle -1 \right ] \Lambda +  \left \langle {\mathbf B}^{-1} {\mathbf a}, {\mathbf B}^{-1} {\mathbf a} \right \rangle =0
\left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf 1} \right \rangle \Lambda^2+ 2\left [  \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf a} \right \rangle -1 \right ] \Lambda +  \left \langle {\mathbf B}^{-1} {\mathbf a}, {\mathbf B}^{-1} {\mathbf a} \right \rangle =0
\qquad \mbox{(7)}</math>
\qquad \mbox{(13)}</math>
 


The previous expression (13) is a quadratic equation in <math>\Lambda</math> (note that matrix <math>{\mathbf B}</math> and the vector <math>\mathbf a </math> are also known) and provides two solutions, that introduced in expression (10) provides the searched solution:


The previous expression is a quadratic equation in <math>\Lambda</math> (note that matrix <math>{\mathbf B}</math> and the vector {\mathbf a} are also known) and provides two solutions, one of them is the searched solution
::<math>
<math>
\left[
\left[
\begin{array}{c}
\begin{array}{c}
Line 271: Line 284:
c\,\delta t\\
c\,\delta t\\
\end{array}
\end{array}
\right]</math>.
\right]
\qquad \mbox{(14)}</math>.
 
The other solution is far from the earth surface.
The other solution is far from the earth surface.


==Generalisation to the case of <math>n</math>-measurements:==


==Generalisation to the case of <math>n</math>-measurements:==


If more than four observations are available, the matrix <math>{\mathbf B}</math> is not square. However, multiplying by <math>{\mathbf B}^T</math>, one obtains (Least Squares solution):
If more than four observations are available, the matrix <math>{\mathbf B}</math> is not square. However, multiplying by <math>{\mathbf B}^T</math>, one obtains (Least Squares solution):


<math>{\mathbf B}^T{\mathbf a} -{\mathbf B}^T {\mathbf B}\,{\mathbf M} \left[
::<math>
{\mathbf B}^T{\mathbf a} -{\mathbf B}^T {\mathbf B}\,{\mathbf M} \left[
\begin{array}{c}
\begin{array}{c}
{\mathbf r}\\
{\mathbf r}\\
Line 286: Line 302:
\right]
\right]
+\Lambda \; {\mathbf B}^T {\mathbf 1}=0
+\Lambda \; {\mathbf B}^T {\mathbf 1}=0
</math>
\qquad \mbox{(15)}</math>




where:
where:


<math>
::<math>
\left[
\left[
\begin{array}{c}
\begin{array}{c}
Line 299: Line 315:
\right]
\right]
={\mathbf M} ({\mathbf B}^T {\mathbf B})^{-1}{\mathbf B}^T(\Lambda \; {\mathbf 1} + {\mathbf a})
={\mathbf M} ({\mathbf B}^T {\mathbf B})^{-1}{\mathbf B}^T(\Lambda \; {\mathbf 1} + {\mathbf a})
</math>
\qquad \mbox{(16)}</math>




and then:
and then:


<math>
::<math>
\begin{array}{r}
\begin{array}{r}
\left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1} \right \rangle \Lambda^2+ 2\left [  \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle -1 \right ] \Lambda +\\[0.3cm]
\left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1} \right \rangle \Lambda^2+ 2\left [  \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle -1 \right ] \Lambda +\\[0.3cm]
+ \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle =0
+ \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle =0
\end{array}
\end{array}
</math>
\qquad \mbox{(17)}</math>
 


==Notes==
==Notes==
<references group="footnotes"/ >
<references group="footnotes"/>


[[Category:Fundamentals]]
[[Category:Fundamentals]]
[[Category:GNSS Measurements Modelling]]

Latest revision as of 11:12, 7 July 2014


FundamentalsFundamentals
Title Bancroft Method
Author(s) J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
Level Advanced
Year of Publication 2011

The Bancroft method allows obtaining a direct solution of the receiver position and the clock offset, without requesting any "a priori" knowledge for the receiver location.


Raising and resolution

Let [math]\displaystyle{ PR^j }[/math] the prefit-residual of satellite-[math]\displaystyle{ j }[/math], computed from equation (1)

[math]\displaystyle{ R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j \qquad \mbox{(1)} }[/math]


after removing all model terms not needing the a priory knowledge of the receiver position:[footnotes 1]

[math]\displaystyle{ PR^j\equiv R^j +c\,\delta t^j-TGD^j \qquad \mbox{(2)} }[/math]


Thence, neglecting the tropospheric and ionospheric terms, as well as the multipath and receiver noise, the equation (3)

[math]\displaystyle{ \begin{array}{r} R^j-D^j\simeq \sqrt{(x^j-x)^2+(y^j-y)^2+(z^j-z)^2}+c\,\delta t\\[0.3cm] j=1,2,...,n~~~~ (n \geq 4)\\ \end{array} \qquad \mbox{(3)} }[/math]

can be written as:

[math]\displaystyle{ PR^j = \sqrt{(x^j-x)^2+(y^j-y)^2+(z^j-z)^2}+c \, \delta t \qquad \mbox{(4)} }[/math]


Developing the previous equation (4), it follows:

[math]\displaystyle{ \left[{x^j}^2+{y^j}^2+{z^j}^2-{PR^j}^2 \right]-2 \left[x^j x+y^j y+z^j z-{PR^jc\,\delta t} \; \right] + \left[x^2+y^2+z^2-(c\,\delta t)^2 \right]=0 \qquad \mbox{(5)} }[/math]


Then, calling [math]\displaystyle{ {\mathbf r}=[x,y,z]^T }[/math] and considering the inner product of Lorentz [footnotes 2] the previous equation (5) can be expressed in a more compact way as:

[math]\displaystyle{ \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right] \right \rangle - \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle + \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle =0 \qquad \mbox{(6)} }[/math]


The former equation can be raised for every satellite (or prefit-residual [math]\displaystyle{ PR^j }[/math]).


If four measurements are available, thence, the following matrix can be written, containing all the available information on satellite coordinates and pseudoranges (every row corresponds to a satellite):

[math]\displaystyle{ {\mathbf B}= \left( \begin{array}{cccc} x^1&y^1&z^1&PR^1\\ x^2&y^2&z^2&PR^2\\ x^3&y^3&z^3&PR^3\\ x^4&y^4&z^4&PR^4\\ \end{array} \right) \qquad \mbox{(7)} }[/math]


Then, calling:

[math]\displaystyle{ \Lambda= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle \; , \; {\mathbf 1}= \left[ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ \end{array} \right] \; , \; {\mathbf a}= \left[ \begin{array}{c} a_1\\ a_2\\ a_3\\ a_4\\ \end{array} \right] \; \mbox{being} \; \; a_j= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}^j\\ PR^j\\ \end{array} \right] \right \rangle \qquad \mbox{(8)} }[/math]


The four equations for pseudorange can be expressed as:

[math]\displaystyle{ {\mathbf a} -{\mathbf B}\,{\mathbf M} \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] +\Lambda \; {\mathbf 1}=0\;\;,\;\;\;\; \mbox{being} \;\;\;\;\;\; {\mathbf M}=\left( \begin{array}{cccc} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&-1\\ \end{array} \right) \qquad \mbox{(9)} }[/math]


from where:

[math]\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] ={\mathbf M} {\mathbf B}^{-1} (\Lambda \; {\mathbf 1} + {\mathbf a}) \qquad \mbox{(10)} }[/math]


Then, taking into account the following equality

[math]\displaystyle{ \langle {\mathbf M}{\mathbf g},{\mathbf M}{\mathbf h} \rangle=\langle {\mathbf g},{\mathbf h} \rangle \qquad \mbox{(11)} }[/math],


and that

[math]\displaystyle{ \Lambda= \frac{1}{2} \left \langle \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right], \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \right \rangle \qquad \mbox{(12)} }[/math],


from the former expression (10), one obtains:

[math]\displaystyle{ \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle {\mathbf B}^{-1} {\mathbf 1}, {\mathbf B}^{-1} {\mathbf a} \right \rangle -1 \right ] \Lambda + \left \langle {\mathbf B}^{-1} {\mathbf a}, {\mathbf B}^{-1} {\mathbf a} \right \rangle =0 \qquad \mbox{(13)} }[/math]


The previous expression (13) is a quadratic equation in [math]\displaystyle{ \Lambda }[/math] (note that matrix [math]\displaystyle{ {\mathbf B} }[/math] and the vector [math]\displaystyle{ \mathbf a }[/math] are also known) and provides two solutions, that introduced in expression (10) provides the searched solution:

[math]\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] \qquad \mbox{(14)} }[/math].

The other solution is far from the earth surface.

Generalisation to the case of [math]\displaystyle{ n }[/math]-measurements:

If more than four observations are available, the matrix [math]\displaystyle{ {\mathbf B} }[/math] is not square. However, multiplying by [math]\displaystyle{ {\mathbf B}^T }[/math], one obtains (Least Squares solution):

[math]\displaystyle{ {\mathbf B}^T{\mathbf a} -{\mathbf B}^T {\mathbf B}\,{\mathbf M} \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] +\Lambda \; {\mathbf B}^T {\mathbf 1}=0 \qquad \mbox{(15)} }[/math]


where:

[math]\displaystyle{ \left[ \begin{array}{c} {\mathbf r}\\ c\,\delta t\\ \end{array} \right] ={\mathbf M} ({\mathbf B}^T {\mathbf B})^{-1}{\mathbf B}^T(\Lambda \; {\mathbf 1} + {\mathbf a}) \qquad \mbox{(16)} }[/math]


and then:

[math]\displaystyle{ \begin{array}{r} \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1} \right \rangle \Lambda^2+ 2\left [ \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf 1}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle -1 \right ] \Lambda +\\[0.3cm] + \left \langle ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a}, ({\mathbf B}^T {\mathbf B})^{-1} {\mathbf B}^T{\mathbf a} \right \rangle =0 \end{array} \qquad \mbox{(17)} }[/math]


Notes

  1. ^ The tropospheric and ionospheric terms, [math]\displaystyle{ T^j }[/math] and [math]\displaystyle{ \hat{\alpha} \,I^j }[/math], can not be included, because the need to consider the satellite-receiver ray. Off course, after an initial computation of the receiver coordinates, the method could be iterated using the ionospheric and tropospheric corrections to improve the solution.
  2. ^ [math]\displaystyle{ \left \langle{\mathbf a},{\mathbf b}\right \rangle={\mathbf a}^{t} \; {\mathbf M} \; {\mathbf b}= \left[ \begin{array}{c} a_1,a_2,a_3,a_4 \end{array} \right] \left( \begin{array}{cccc} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&-1\\ \end{array} \right) \left[ \begin{array}{c} b_1\\ b_2\\ b_3\\ b_4 \end{array} \right] }[/math]