If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

GLONASS Space Segment: Difference between revisions

From Navipedia
Jump to navigation Jump to search
(Created page with "{{Article Infobox2 |Category=GLONASS |Title={{PAGENAME}} |Authors=GMV |Level=Basic |YearOfPublication=2011 |Logo=GMV }} The main functions of the Space Segment are to transmit r...")
 
mNo edit summary
 
(59 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{Article Infobox2
{{Article Infobox2
|Category=GLONASS
|Category=GLONASS
|Title={{PAGENAME}}
|Editors=GMV
|Authors=GMV
|Level=Basic
|Level=Basic
|YearOfPublication=2011
|YearOfPublication=2011
|Logo=GMV
|Logo=GMV
|Title={{PAGENAME}}
}}
}}
The main functions of the Space Segment are to transmit radio-navigation signals, and to store and retransmit the navigation message sent by the Control Segment. These transmissions are controlled by highly stable atomic clocks on board the satellites.<ref name="GNSS-Book">J. Sanz Subirana, JM. Juan Zornoza and M. Hernández-Pajares, Global Navigation Satellite Systems: Volume I: Fundamentals and Algorithms</ref>
The space segment is defined by the number of satellites in the constellation (to ensure visibility of, at least, 4 satellites in view at any time and from anywhere on Earth), as well as the characteristics of the satellites in question.
==GLONASS Satellite Constellation==
[[File:GlonassConstellation.JPG|Glonass Constellation|400px|thumb|right]]
The [[GLONASS General Introduction|GLONASS]] space segment consists nominally of 24 operational satellites, distributed over three orbital planes.<ref> [http://www.sdcm.ru/index_eng.html Russian system of differentional correction and monitoring]</ref>
The longitude of ascending node differs by 120 deg from plane to plane. There are eight satellites per plane, separated 45 deg in argument of latitude. The difference in the argument of latitude of satellites in equivalent slots in two different orbital planes is 15 deg. Each satellite is identified by its slot number, which defines the orbital plane and its location within the plane.<ref>[http://new.glonass-iac.ru/en/CUSGLONASS/index.php GLONASS SCC Information]</ref>


The main functions of the Space Segment are to transmit radio-navigation signals, and to store and retransmit the navigation message sent by the Control Segment. These transmissions are controlled by highly stable atomic clocks on board the satellites. <ref name="GNSS-Book">J. Sanz Subirana, JM. Juan Zornoza and M. Hernández-Pajares, Global Navigation Satellite Systems: Volume I: Fundamentals and Algorithms</ref>
The [[GPS General Introduction|GPS]] space segment also consists of nominally 24 satellites, which are, however, distributed over six orbital planes, differing from plane to plane by 60 deg in longitude of the ascending node.  


Two main aspects define the space segment: One is the satellite constellations with enough satellites to ensure that the users will have, at least, 4 simultaneous satellites in view from any point at the earth surface at any time. The other aspect is the features of the satellites that occupy each orbital slot.
[[GLONASS General Introduction|GLONASS]] satellites operate in circular orbits at an altitude of 19100-km, an inclination of 64.8 deg and each satellite completes the orbit in approximately 11 hours 15 minutes. This means that for a stationary observer the same satellite is visible at the same point in the sky every eight sidereal days. Since there are eight satellites in each orbital plane, satellite positions in the sky get repeated each (although by  different satellites). With the 11 h 58 min orbital period for [[GPS General Introduction|GPS]] satellites, the same [[GPS General Introduction|GPS]] satellite is visible at the same point in the sky every (sidereal) day.


==GLONASS Satellite Constellation==
Satellites carry atomic clocks and the payload needed for handling (receiving, processing and transmitting) navigation data. They also have reflectors to allow laser ranging from dedicated ground stations.
The [[:Category:GLONASS|GLONASS]] space segment consists of 24 operational satellites, distributed over three orbital planes.<ref> [http://www.sdcm.ru/index_eng.html Russian system of differentional correction and monitoring]</ref> Currently, the number of satellites in the constellation is 27, 23 operational, one in commissioning phase and three in maintenance.<ref>[http://www.glonass-center.ru/en/GLONASS/ GLONASS constellation status]</ref>


The longitude of ascending node differs by 120º from plane to plane. Each plane comprises eight satellites, staggered by 45º in argument of latitude. The arguments of latitude of satellites in equivalent slots in two different orbital planes differ by 15º. Each satellite is identified by its slot number, which defines the orbital plane and its location within the plane. The 1st orbital plane has slot numbers 1…8, the 2nd orbital plane - slots 9…16, and the 3rd orbital plane - slots 17…24.
Differences between GPS and GLONASS constellations are summarized in the following table:


The [[:Category:GPS|GPS]] space segment also consists of nominally 24 satellites, which are, however, distributed over six orbital planes, differing from plane to plane by 60º in longitude of the ascending node.  
{| class="wikitable"
!
!GLONASS
!GPS
!GALILEO
|-
!Number of nominal satellites
|align="center"|24
|align="center"|24
|align="center"|30
|-
!Number of orbital planes
|align="center"|3
|align="center"|6
|align="center"|3
|-
!Orbital Inclination
|align="center"|64&deg;8'
|align="center"|55&deg;
|align="center"|56&deg;
|-
!Orbital altitude
|align="center"|19.140 km
|align="center"|20.180 km
|align="center"|23.222 km
|-
!Period of revolution
|align="center"|11h 15m
|align="center"|11h 58m
|align="center"|14h 22m
|-
!Launch site
|align="center"|Baikonur/Plesetsk
|align="center"|Cape Canaveral
|align="center"|Kourou (French Guiana)
|-
!Date of first launch
|align="center"|02/10/82
|align="center"|22/02/78
|align="center"|N/A
|-
!Satellites for launch
|align="center"|1/3
|align="center"|1
|align="center"|2
|-
!Datum
|align="center"|PZ-90.11
|align="center"|WGS-84
|align="center"|GTRF
|}


[[:Category:GLONASS|GLONASS]] satellites operate in circular orbits at an altitude of 19100-km, an inclination of 64.8 deg and each satellite completes the orbit in approximately 11 hours 15 minutes. This means that for a stationary observer the same satellite is visible at the same point in the sky every eight sidereal days. Since there are eight satellites in each orbital plane, each day a different satellite appears at the same point in the sky. With the 11 h 58 min orbital period for [[:Category:GPS|GPS]]satellites, the same [[:Category:GPS|GPS]]satellite is visible at the same point in the sky every (sidereal) day.
==GLONASS Satellite Description==
GLONASS satellites are divided into blocks. Each block is a set of satellites usually launched within certain time interval. Below there is a brief description of the different blocks:<ref name="GNSS-Book"/>


Besides its atomic clock and the equipment for receiving, processing, storing and transmitting navigational data, [[:Category:GLONASS|GLONASS]] satellites carry an extensive propulsion system, enabling the satellite to keep its orbital position, to control its attitude and even to manoeuvre to a different orbital position. The attitude control system obtains its information from a number of different sensors, including an earth sensor and a magnetometer. Reflectors on the satellite body near the transmission antennae serve for purposes of laser ranging from ground stations.  
*'''Prototypes (Generation zero)'''.The first prototypes of GLONASS (Uragan) satellites were sent into orbit in October 1982, being up to 18 spacecrafts launched between 1982 and 1985.These first GLONASS satellites are referred to as Block I vehicles and, although being designed to last only one year, many of them had an actual lifetime up to more than 14 months.


*'''First generation'''. The first true GLONASS satellites were launched between 1985 and 1990. They are divided into different block vehicles (Block IIa, IIb, and IIv), being the design lifetimes the main difference between blocks. The lifetimes ranged from the 2-year design of Block IIb to 3-year of Block IIv, with many spacecraft exceeding this (up to 4.5 years).These satellites are all 3-Axis stabilized spacecrafts with satellite mass of about 1 250 Kg, being equipped with a basic propulsion system to allow relocation within the constellation. They have improved time and frequency standards over the previous spacecraft prototypes, with increased frequency stability.


*'''Second generation, GLONASS-M''' (or Uragan-M) is the second generation of satellites, where -M indicates modernized or modified. They were developed from 1990 on, with the first one sent into orbit in 2003. GLONASS-M satellites have a longer design lifetime of seven years as a result of propulsion system and clock stability (Cesium clocks) improvements. This is a big lifetime increase compared with the 2-3 years of previous first generation spacecraft, but it is still under the 10 years mean life of the GPS. These satellites have a mass of around 1 480 kg. Their size is of 2.4 m of diameter and 3.7 m in high, with dual solar arrays of 7.2 m. They also carry corner-cube laser reflectors for precise orbit determination and geodetic research. A remarkable feature of these satellites is the addition of a second civil signal on G2 band, which allows the civil users to cancel out the ionospheric refraction. On June 14, 2014 Russia placed into orbit into orbit a GLONASS-M satellite, carried there by a Soyuz 2-1b rocket from the Plesetsk Cosmodrome north of Moscow. This new GLONASS-M satellite is also equipped with an experimental payload capable of transmitting CDMA signals in the L3 frequency band (centered at 1202.025 MHz), contrary to the initial plans of including the CDMA signals transmission only on GLONASS-K third generation satellites.<ref>[http://gpsworld.com/russia-launches-single-glonass-satellite/ Russia Launches Single GLONASS Satellite], GPS World, GPS Staff, June 16, 2014</ref><ref>[http://insidegnss.com/russia-launches-cdma-payload-on-glonass-m/ Russia Launches CDMA Payload on GLONASS-M], Inside GNSS, June 16, 2014</ref>
[[File:K_model_at_Cebit_2011_Satellite.jpg|Glonass K satellite at the CeBIT 2011 Expo in Germany|300px|thumb|right]]
*'''Third generation''': The following generation of satellites, '''GLONASS-K''', has a service life of 10 years and a reduced weight of only 750Kg (allowing their launch in pairs from Plesetsk Cosmodrome on Soyuz-2-1a). This new generation of satellites includes, for the first time, code-division-multiple-access (CDMA) signals accompanying the legacy frequency-division-multiple-access signals.


==GPS Satellite Description==
[[File:Gps_sat_san_diego.jpg|GPS satellite at San Diego Museum|300px|thumb|right]]


The design of GPS satellites has evolved with time. Each generation of satellites with similar characteristics is called a ''block''. A brief description of the different GPS blocks follows:<ref name="GNSS-Book"/>
Finally, the following table gathers the main characteristics of the different GLONASS satellite blocks:
* '''Block I, Navigation Development Satellites''': Eleven satellites of this kind were launched between 1978 and 1985.<ref name="BlockI"> [ftp://tycho.usno.navy.mil/pub/gps/gpsb1.txt Block I Satellite Information]</ref> The Selective Availability (S/A) was not implemented. They weighed about 845Kg and had a planned average life of 4.5 years, although some of them lasted up to 10. They were capable of giving positioning service for 3 or 4 days without any contact with the control centre.
* '''Block II and IIA, Operational Satellites''': They consist of 28 satellites in total that were launched from 1989 on and many are still operating.<ref name="BlockII"> [ftp://tycho.usno.navy.mil/pub/gps/gpsb2.txt Block II Satellite Information]</ref> They weigh about 1 500 Kg and have a planned average life of 7.5 years. Since 1990, an improved version was used, Block IIA (advanced), with capability of mutual communication. They are able to supply positioning service for 180 days with no contact with the control segment. However, under normal operating mode, they communicate daily.
* '''Block IIR, Replacement Operational Satellites''':<ref name="BlockII"/> From 1997, these satellites are being used as spares for Block II. Block IIR is formed by a set of 20 satellites, although it could be increased by 6 more. They weigh about 2 000Kg and have a planned average lifespan of 10 years. These satellites have the capability to autonomously determine their orbits and generate their own navigation message. They are able to measure distances between them and transmit observations to other satellites or to the control segment. A satellite of this category, completely developed, must be capable of operating about half a year without any support from Control Segment and no degradation in ephemeris accuracy. It is expected that some of them could be equipped with Hydrogen masers.
* '''Block IIR-M, Modernized Satellites''': They include a new military signal and the more robust civil signal L2C. There will be eight satellites in the Block IIR-M series. The first Block IIR-M satellite was launched on September 26, 2005 <ref name="BlockII"/>.
* '''Block IIF, Follow-on Operational Satellites''': The first satellite (SVN62) was launched on May 28th 2010 <ref name="BlockII"/><ref name="GPS Constellation Status">[http://gge.unb.ca/Resources/GPSConstellationStatus.txt GPS Constellation Status]</ref>. These satellites will include the third civil signal on the L5 band. Their theoretical average life is about 15 years, and they will have inertial navigation systems.
* '''Block III''': The new generation of GPS satellites will introduce significant enhancements in navigation capabilities, by improving interoperability and jam resistance. They will provide the fourth civil signal on L1 band (L1C). The first launch is expected as of 2016.


Finally, the following table gathers the main characteristics of a GPS Satellite:<ref>[http://www.af.mil/information/factsheets/factsheet.asp?id=119 Global Positioning System Fact sheets]</ref>
{| class="wikitable"
!
!Glonass
!Glonass-M
!Glonass-K
|-
!Status
|align="center"|out of service
|align="center"|in service
|align="center"|in service
|-
!First launch
|align="center"|1982
|align="center"|2003
|align="center"|2011
|-
!Lifetime (years)
|align="center"|3
|align="center"|7
|align="center"|10
|-
!Mass (Kg)
|align="center"|1250
|align="center"|1480
|align="center"|750
|-
!Output power (W)
|align="center"|1000
|align="center"|1600
|align="center"|1600
|-
!Number of civil signals
|align="center"|1
|align="center"|2
|align="center"|2
|-
!On board clocks stability
|align="center"|5x10<sup>-13</sup>
|align="center"|1x10<sup>-13</sup>
|align="center"|1x10<sup>-14</sup>
|}


==Notes==
==Notes==
Line 43: Line 137:
<references/>
<references/>


[[Category:GLONASS|GLONASS Arquitecture]]
[[Category:GLONASS|GLONASS Architecture]]

Latest revision as of 12:55, 22 June 2018


GLONASSGLONASS
Title GLONASS Space Segment
Edited by GMV
Level Basic
Year of Publication 2011
Logo GMV.png

The main functions of the Space Segment are to transmit radio-navigation signals, and to store and retransmit the navigation message sent by the Control Segment. These transmissions are controlled by highly stable atomic clocks on board the satellites.[1]

The space segment is defined by the number of satellites in the constellation (to ensure visibility of, at least, 4 satellites in view at any time and from anywhere on Earth), as well as the characteristics of the satellites in question.

GLONASS Satellite Constellation

Glonass Constellation

The GLONASS space segment consists nominally of 24 operational satellites, distributed over three orbital planes.[2] The longitude of ascending node differs by 120 deg from plane to plane. There are eight satellites per plane, separated 45 deg in argument of latitude. The difference in the argument of latitude of satellites in equivalent slots in two different orbital planes is 15 deg. Each satellite is identified by its slot number, which defines the orbital plane and its location within the plane.[3]

The GPS space segment also consists of nominally 24 satellites, which are, however, distributed over six orbital planes, differing from plane to plane by 60 deg in longitude of the ascending node.

GLONASS satellites operate in circular orbits at an altitude of 19100-km, an inclination of 64.8 deg and each satellite completes the orbit in approximately 11 hours 15 minutes. This means that for a stationary observer the same satellite is visible at the same point in the sky every eight sidereal days. Since there are eight satellites in each orbital plane, satellite positions in the sky get repeated each (although by different satellites). With the 11 h 58 min orbital period for GPS satellites, the same GPS satellite is visible at the same point in the sky every (sidereal) day.

Satellites carry atomic clocks and the payload needed for handling (receiving, processing and transmitting) navigation data. They also have reflectors to allow laser ranging from dedicated ground stations.

Differences between GPS and GLONASS constellations are summarized in the following table:

GLONASS GPS GALILEO
Number of nominal satellites 24 24 30
Number of orbital planes 3 6 3
Orbital Inclination 64°8' 55° 56°
Orbital altitude 19.140 km 20.180 km 23.222 km
Period of revolution 11h 15m 11h 58m 14h 22m
Launch site Baikonur/Plesetsk Cape Canaveral Kourou (French Guiana)
Date of first launch 02/10/82 22/02/78 N/A
Satellites for launch 1/3 1 2
Datum PZ-90.11 WGS-84 GTRF

GLONASS Satellite Description

GLONASS satellites are divided into blocks. Each block is a set of satellites usually launched within certain time interval. Below there is a brief description of the different blocks:[1]

  • Prototypes (Generation zero).The first prototypes of GLONASS (Uragan) satellites were sent into orbit in October 1982, being up to 18 spacecrafts launched between 1982 and 1985.These first GLONASS satellites are referred to as Block I vehicles and, although being designed to last only one year, many of them had an actual lifetime up to more than 14 months.
  • First generation. The first true GLONASS satellites were launched between 1985 and 1990. They are divided into different block vehicles (Block IIa, IIb, and IIv), being the design lifetimes the main difference between blocks. The lifetimes ranged from the 2-year design of Block IIb to 3-year of Block IIv, with many spacecraft exceeding this (up to 4.5 years).These satellites are all 3-Axis stabilized spacecrafts with satellite mass of about 1 250 Kg, being equipped with a basic propulsion system to allow relocation within the constellation. They have improved time and frequency standards over the previous spacecraft prototypes, with increased frequency stability.
  • Second generation, GLONASS-M (or Uragan-M) is the second generation of satellites, where -M indicates modernized or modified. They were developed from 1990 on, with the first one sent into orbit in 2003. GLONASS-M satellites have a longer design lifetime of seven years as a result of propulsion system and clock stability (Cesium clocks) improvements. This is a big lifetime increase compared with the 2-3 years of previous first generation spacecraft, but it is still under the 10 years mean life of the GPS. These satellites have a mass of around 1 480 kg. Their size is of 2.4 m of diameter and 3.7 m in high, with dual solar arrays of 7.2 m. They also carry corner-cube laser reflectors for precise orbit determination and geodetic research. A remarkable feature of these satellites is the addition of a second civil signal on G2 band, which allows the civil users to cancel out the ionospheric refraction. On June 14, 2014 Russia placed into orbit into orbit a GLONASS-M satellite, carried there by a Soyuz 2-1b rocket from the Plesetsk Cosmodrome north of Moscow. This new GLONASS-M satellite is also equipped with an experimental payload capable of transmitting CDMA signals in the L3 frequency band (centered at 1202.025 MHz), contrary to the initial plans of including the CDMA signals transmission only on GLONASS-K third generation satellites.[4][5]
Glonass K satellite at the CeBIT 2011 Expo in Germany
  • Third generation: The following generation of satellites, GLONASS-K, has a service life of 10 years and a reduced weight of only 750Kg (allowing their launch in pairs from Plesetsk Cosmodrome on Soyuz-2-1a). This new generation of satellites includes, for the first time, code-division-multiple-access (CDMA) signals accompanying the legacy frequency-division-multiple-access signals.


Finally, the following table gathers the main characteristics of the different GLONASS satellite blocks:

Glonass Glonass-M Glonass-K
Status out of service in service in service
First launch 1982 2003 2011
Lifetime (years) 3 7 10
Mass (Kg) 1250 1480 750
Output power (W) 1000 1600 1600
Number of civil signals 1 2 2
On board clocks stability 5x10-13 1x10-13 1x10-14

Notes

References

  1. ^ a b J. Sanz Subirana, JM. Juan Zornoza and M. Hernández-Pajares, Global Navigation Satellite Systems: Volume I: Fundamentals and Algorithms
  2. ^ Russian system of differentional correction and monitoring
  3. ^ GLONASS SCC Information
  4. ^ Russia Launches Single GLONASS Satellite, GPS World, GPS Staff, June 16, 2014
  5. ^ Russia Launches CDMA Payload on GLONASS-M, Inside GNSS, June 16, 2014