If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

BeiDou Performances: Difference between revisions

From Navipedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(35 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{Article Infobox2
{{Article Infobox2
|Category=COMPASS
|Category=BEIDOU
|Title={{PAGENAME}}
|Editors=GMV
|Authors=GMV.
|Level=Basic
|Level=Basic
|YearOfPublication=2011
|YearOfPublication=2011
|Logo=GMV
|Logo=GMV
|Title={{PAGENAME}}
}}
}}
The [[BeiDou_General_Introduction|BeiDou Navigation Satellite System (BDS)]], also known as BeiDou-2,<ref name=BDS_STATUS> Compass/BeiDou Status, Jun Shen, BNStar Navigation Technology & System, Inc., Rome (Italy), June 11, 2009.</ref> is China’s second-generation satellite navigation system<ref name=BDS_STATUS/><ref>[https://en.wikipedia.org/wiki/Beidou_Navigation_Satellite_System BeiDou Navigation Satellite System in Wikipedia]</ref> that will be capable of providing positioning, navigation, and timing services to users on a continuous worldwide basis<ref name=BDS_WORLDWIDE> BeiDou China’s Rapidly Emerging GNSS, InsideGNSS, May/June 2014</ref>.
The system is being deployed using an incremental approach and full operational capability is expected to be reached by 2020<ref name=BDS_WORLDWIDE/>. The BeiDou System has been designed to reach accuracy levels similar to those of GPS and Galileo Open Service: positioning accuracy within 10 meters, timing accuracy within 50 ns and velocity accuracy within 0.2 meters per second<ref name=BDS_PERFO> BeiDou System, Open Service Performance Standard, China Satellite Navigation Office, Version 1.0, December 2013</ref>.
==BeiDou Performances==
===BeiDou Navigation Test System (BeiDou-1)===
The BeiDou-1 system was established in 2003, after the successful launch of BeiDou-1C satellite, for the area of the greater China and providing navigation, communication and timing services with performance characteristics as follows:<ref name=BDS_STATUS/>:
* Positioning: 100m (1σ); 20m (1σ, with reference stations).
* Regional Service short message service (SMS): up to 120 Chinese characters.
* Timing: 20 ns.
===BeiDou Navigation Satellite System (BeiDou-2)===
The Initial Operational Service of BeiDou System was officially declared in December 2011, for which the initial performances as reported in the Munich Satellite Navigation Summit of 2012 were:
* Service coverage area: regional
* Positioning accuracy: 25 meters horizontally adn 30 meters vertically
* Timing accuracy of 50 ns
* Velocity accuracy of 0.4 m/s
These performances are being improved as the number of satellites in orbit increase and the user segment evolves.


The Compass Navigation Satellite System (CNSS), or BeiDou-2, is China’s second-generation satellite navigation system capable of providing positioning, navigation, and timing services to users on a continuous worldwide basis.
The global BeiDou system will be built by 2020 and it is being designed to offer the following performances for  each [[BeiDou Services]]<ref  name=BEIDOU_MUNICH_2011>China Satellite Navigation Office, Development of BeiDou Navigation Satellite System, Munich Satellite Navigation Summit, 2011</ref><ref name=BDS_STATUS/><ref name=BDS_WORLDWIDE/><ref name=BDS_PERFO/><ref>[http://www.beidou.gov.cn/2013/09/29/2013092903db7281fa3f43b9aaeb1cb65d606b1a.html Ran Chengqi: The Construction and Development of Beidou Navigation Satellite System]</ref>:


The system has evolved from a regional system, BeiDou-1, and firstly will initially used to provide high-accuracy positioning services for users in China and its neighbouring regions. The long-term goal is to develop an independent ''global'' navigation satellite network similar to the GPS and GLONASS. <ref name=Chinese_today>[http://www.sinodefence.com/space/spacecraft/beidou2.asp Compass on the Chinese Defence Today website] </ref>
* ''Open service'': a free service for civilian users with positioning accuracy better than 10 meters, velocity accuracy better than 0.2 m/s and timing accuracy better than 50 nanoseconds, considering 95% probability.  


==COMPASS Performances==
* ''Authorized service'': a licensed service with higher accuracy even in complex situations for authorized and military users only;


In May 2003, the successful launch of BeiDou-1C also meant the establishment of the BeiDou-1 navigation system. On November 2, 2006, China announced that from 2008 BeiDou would offer an open service with an accuracy of 10 meters, timing of 0.2 nanoseconds, speed of 0.2 meter/second. It followed that in February 2007, the fourth and also the last satellite of BeiDou-1 system, the BeiDou-1D was sent up into space.<ref>[http://en.wikipedia.org/wiki/Beidou_navigation_system Beidou Navigation System in Wikipedia]</ref><ref>[http://en.wikipedia.org/wiki/Compass_navigation_system COMPASS Navigation system in Wikipedia]</ref>
* ''Wide area differential positioning service'': with positioning accuracy of sub-meter and meter for dual-frequency and single-frequency receivers;


* ''Short message service (SMS)'': up to 120 Chinese characters.


The COMPASS system will provide two types of services: <ref name=Chinese_today/>
====Combined Services Performances====


* a free service for civilian users with positioning accuracy of within 10 metres, velocity accuracy of within 0.2 m/s and timing accuracy of within 50 nanoseconds;
[[File:BeiDou_PDOP.png‎| PDOP of GPS , BeiDou and combined GPS+BeiDou (elevation =7.5)<ref name=BDS_GPS>The Comparison on the Positioning Performance Between BeiDou and GPS: Y. Xu, S. Ji, W. Chen, D. Weng, Y.Xu, W. Chen, D. Weng, The Hong Kong Polytechnic University, Hong Kong; S. Ji, China University of Petroleum, China, ION GNSS 2013.</ref>|400px|thumb]]


* a licensed service with higher accuracy even in complex situations for authorised and military users only.  
Preliminary performance figures were presented in the BeiDou Workshop, integrated in the ION GNSS 2013 Conference. The BeiDou constellation available at the time already provided many visible satellites as GPS (BeiDou: 8, 9, 10, 11, 12, 13; GPS: 6, 7, 8, 9, 10, 11, 12, 13), but the values of PDOP are bigger than that of GPS (average values, BeiDou: 2.076, GPS: 1.694), as depicted in the figure<ref name=BDS_GPS/>.


Initially the system will initially cover China and its neighbouring countries only, but will eventually extend into a global navigation satellite system by 2020.
The presented results shown that a combined BeiDou+GPS constellation provides<ref name=BDS_GPS/>:
* Higher availability: up to 15 satellites were visible in the test conditions (compared to 6 in some cases of GPS only);
* Better geometry: the PDOP for the combined constellation was lower than the PDOP for each individual constellation;
* Better precision: the precisions of GPS are slightly better than that of BeiDou in both horizontal and vertical direction, but the combined solution GPS+BeiDou got the best performance in all direction.




==Notes==
<references group="footnotes"/>
==References==
==References==
<references/>
<references/>




[[Category:COMPASS]]
[[Category:BEIDOU]]

Latest revision as of 15:30, 10 August 2018


BEIDOUBEIDOU
Title BeiDou Performances
Edited by GMV
Level Basic
Year of Publication 2011
Logo GMV.png

The BeiDou Navigation Satellite System (BDS), also known as BeiDou-2,[1] is China’s second-generation satellite navigation system[1][2] that will be capable of providing positioning, navigation, and timing services to users on a continuous worldwide basis[3]. The system is being deployed using an incremental approach and full operational capability is expected to be reached by 2020[3]. The BeiDou System has been designed to reach accuracy levels similar to those of GPS and Galileo Open Service: positioning accuracy within 10 meters, timing accuracy within 50 ns and velocity accuracy within 0.2 meters per second[4].

BeiDou Performances

BeiDou Navigation Test System (BeiDou-1)

The BeiDou-1 system was established in 2003, after the successful launch of BeiDou-1C satellite, for the area of the greater China and providing navigation, communication and timing services with performance characteristics as follows:[1]:

  • Positioning: 100m (1σ); 20m (1σ, with reference stations).
  • Regional Service short message service (SMS): up to 120 Chinese characters.
  • Timing: 20 ns.

BeiDou Navigation Satellite System (BeiDou-2)

The Initial Operational Service of BeiDou System was officially declared in December 2011, for which the initial performances as reported in the Munich Satellite Navigation Summit of 2012 were:

  • Service coverage area: regional
  • Positioning accuracy: 25 meters horizontally adn 30 meters vertically
  • Timing accuracy of 50 ns
  • Velocity accuracy of 0.4 m/s

These performances are being improved as the number of satellites in orbit increase and the user segment evolves.

The global BeiDou system will be built by 2020 and it is being designed to offer the following performances for each BeiDou Services[5][1][3][4][6]:

  • Open service: a free service for civilian users with positioning accuracy better than 10 meters, velocity accuracy better than 0.2 m/s and timing accuracy better than 50 nanoseconds, considering 95% probability.
  • Authorized service: a licensed service with higher accuracy even in complex situations for authorized and military users only;
  • Wide area differential positioning service: with positioning accuracy of sub-meter and meter for dual-frequency and single-frequency receivers;
  • Short message service (SMS): up to 120 Chinese characters.

Combined Services Performances

PDOP of GPS , BeiDou and combined GPS+BeiDou (elevation =7.5)[7]

Preliminary performance figures were presented in the BeiDou Workshop, integrated in the ION GNSS 2013 Conference. The BeiDou constellation available at the time already provided many visible satellites as GPS (BeiDou: 8, 9, 10, 11, 12, 13; GPS: 6, 7, 8, 9, 10, 11, 12, 13), but the values of PDOP are bigger than that of GPS (average values, BeiDou: 2.076, GPS: 1.694), as depicted in the figure[7].

The presented results shown that a combined BeiDou+GPS constellation provides[7]:

  • Higher availability: up to 15 satellites were visible in the test conditions (compared to 6 in some cases of GPS only);
  • Better geometry: the PDOP for the combined constellation was lower than the PDOP for each individual constellation;
  • Better precision: the precisions of GPS are slightly better than that of BeiDou in both horizontal and vertical direction, but the combined solution GPS+BeiDou got the best performance in all direction.


References

  1. ^ a b c d Compass/BeiDou Status, Jun Shen, BNStar Navigation Technology & System, Inc., Rome (Italy), June 11, 2009.
  2. ^ BeiDou Navigation Satellite System in Wikipedia
  3. ^ a b c BeiDou China’s Rapidly Emerging GNSS, InsideGNSS, May/June 2014
  4. ^ a b BeiDou System, Open Service Performance Standard, China Satellite Navigation Office, Version 1.0, December 2013
  5. ^ China Satellite Navigation Office, Development of BeiDou Navigation Satellite System, Munich Satellite Navigation Summit, 2011
  6. ^ Ran Chengqi: The Construction and Development of Beidou Navigation Satellite System
  7. ^ a b c The Comparison on the Positioning Performance Between BeiDou and GPS: Y. Xu, S. Ji, W. Chen, D. Weng, Y.Xu, W. Chen, D. Weng, The Hong Kong Polytechnic University, Hong Kong; S. Ji, China University of Petroleum, China, ION GNSS 2013.