If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

Accuracy

From Navipedia
Revision as of 17:28, 27 March 2011 by Rui.Pereira (talk | contribs)
Jump to navigation Jump to search


FundamentalsFundamentals
Title Accuracy
Author(s) Rui Barradas Pereira
Level Basic
Year of Publication 2011
Logo GMV.png


Accuracy is the degree of conformance between the estimated or measured position and/or velocity of a platform at a given time and its true position or velocity[footnotes 1].


Measuring Accuracy

Although being very easily understood from a conceptual point of view, the way that accuracy is measured and what is measured is not always obvious. The accuracy concept is generally used to measure the accuracy of positioning but can be also be used to measure the accuracy of velocity and even the accuracy of timming. For positioning there are 3 variants depending on the number of dimensions being considered: unidimensional accuracy (used for vertical accuracy), bidimensional accuracy (used for horizontal accuracy) and tridimensional accuracy (combining horizontal and vertical accuracy)

In literature and in system/product specifications it can be found measurements of accuracy such as CEP, rms, Percentile 67%, Percentile 95%, 1 sigma, 2 sigma. Some of these accuracy measures are averages while others are counts of distribution[2]:

  • x% Percentile (x%): Means that x% of the positions calculated have an error lower or equal to the accuracy value obtained. Typical used values are 50%, 67%, 75% and 95%. Having an accuracy of 5m (95%) means that in 95% of the time the positioning error will be equal or below 5m.
  • Circular Error Probable (CEP): Percentile 50%. Means that 50% of the positions returned calculated have an error lower or equal to the accuracy value obtained.
  • Root Mean Square Error (rms): The square root of the average of the squared error. This measurement is an average but assuming that the error follows a normal distribuition (which is close but not exactly true) it will correspond to the percentile 68% in unidimensional distribuitions (e.g. vertical error or timming error) and percentile 63% for bidimensional distributions (e.g. horizontal error). For the horizontal error this measurement is also refered as drms and can have variants such as 2rms or 2drms (2 times rms)
  • x sigma: 1 sigma corresponds to one standard deviation and x sigma corresponds to x times 1 sigma. Assuming normal distribuitions 1 sigma corresponds to Percentile 68% in unidimentional distribuitions and Percentile 39% for bidimentional distribuitions.

Less used that the previous measurements are the:

  • mean error: Average error. Corresponds Percentile 68% in unidimentional distribuitions and Percentile 54% for bidimentional distribuitions.
  • standard deviation: Standard deviation of the error. Same as one sigma. Corresponds Percentile 58% in unidimentional distribuitions and Percentile 39% for bidimentional distribuitions.

The mean error and the standard deviation as less used accuracy measurements but assuming the normal distribution its use is as legitimate as the other mesurements used.

Relationship between Accuracy Measurements

Assuming normal distribuitions these accuracy measurements can be converted between themselves. There is a correspondence between sigmas and percentiles. This correspondence can be used to convert between accuracy measurements since an accurary of 1m (1 sigma) corresponds to 2m (2 sigma) , 3m (3 sigma) and xm (x sigma).


For unidimensional distributions:

Sigma Percentile
0,67 0,5 (CEP)
0,80 0,58 (mean error)
1 0,6827 (rms and std deviation)
1,15 0,75
1,96 0,95
2 0,9545
2,33 0,98
2,57 0,99
3 0,9973
4 0,999936
5 0,99999942
6 0,999999998


For bidimensional distributions (Rayleigh distribution) :

Sigma Percentile
1 0,394 (std deviation)
1,18 0,5 (CEP)
1,25 0,544 (mean error)
1,414 0,632 (rms)
1,67 0,75
2 0,865
2,45 0,95
2,818 0,982 (2rms)
3 0,989
3,03 0,99
4 0,9997
5 0,999997
6 0,999999985



Notes

  1. ^ This accuracy definition has been taken from the 2008 US Federal Radionavigation Plan[1]

References

  1. ^ Federal Radionavigation Plan, DOT-VNTSC-RITA-08-02/DoD-4650.5, 2008
  2. ^ GNSS Accuracy: Lies, Damn Lies, and Statistics, GPS World, Frank van Diggelen, January 2007