If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor
Help:Math
Template:H:h Template:Other languages/Help:Displaying a formula
MediaWiki uses a subset of TeX markup, including some extensions from LaTeX and AMS-LaTeX, for mathematical formulae. It generates either PNG images or simple HTML markup, depending on user preferences and the complexity of the expression.
More precisely, MediaWiki filters the markup through Texvc, which in turn passes the commands to TeX for the actual rendering. Thus, only a limited part of the full TeX language is supported; see below for details.
To have math rendered, you have to set $wgUseTeX = true;
in LocalSettings.php.
Technicals
Syntax
Math markup goes inside the math: <math> ... </math>
tag.
Similar to HTML, in TeX extra spaces and newlines are ignored.
Rendering
The PNG images are black on white (not transparent). These colors, as well as font sizes and types, are independent of browser settings or CSS. Font sizes and types will often deviate from what HTML renders. Vertical alignment with the surrounding text can also be a problem.
The alt
attribute of the PNG images (the text that is displayed if your browser can't display images; Internet Explorer shows it up in the hover box) is the wikitext that produced them, excluding the <math>
and </math>
.
Apart from function and operator names, as is customary in mathematics for variables, letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use \text
, \mbox
, or \mathrm
. You can also define new function names using \operatorname{...}
. For example, <math>\text{abc}</math>
gives [math]\displaystyle{ \text{abc} }[/math]. This does not work for special characters, they are ignored unless the whole <math> expression is rendered in HTML:
- <math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}</math>
- <math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}\,</math>
gives:
- [math]\displaystyle{ \text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ} }[/math]
- [math]\displaystyle{ \text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}\, }[/math]
Nevertheless, using \mbox
instead of \text
, more characters are allowed
For example,
- <math>\mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ}</math>
- <math>\mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ}\,</math>
gives:
- [math]\displaystyle{ \mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ} }[/math]
- [math]\displaystyle{ \mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ}\, }[/math]
But \mbox{ð}
and \mbox{þ}
will give an error:
- [math]\displaystyle{ \mbox {ð} }[/math]
- [math]\displaystyle{ \mbox {þ} }[/math]
TeX vs HTML
Before introducing TeX markup for producing special characters, it should be noted that, as this comparison table shows, sometimes similar results can be achieved in HTML (see Help:Special characters).
TeX Syntax (forcing PNG) | TeX Rendering | HTML Syntax | HTML Rendering |
---|---|---|---|
<math>\alpha\,\!</math>
|
[math]\displaystyle{ \alpha\,\! }[/math] | {{math|<VAR>α</VAR>}}
|
Template:Math |
<math>\sqrt{2}</math>
|
[math]\displaystyle{ \sqrt{2} }[/math] | {{math|{{radical|2}}}}
|
Template:Math |
<math>\sqrt{1-e^2}</math>
|
[math]\displaystyle{ \sqrt{1-e^2}\! }[/math] | {{math|{{radical|1 − ''e''²}}}}
|
Template:Math |
The codes on the left produce the symbols on the right, but the latter can also be put directly in the wikitext, except for ‘=’.
Syntax | Rendering |
---|---|
α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω Γ Δ Θ Λ Ξ Π Σ Φ Ψ Ω |
α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω Γ Δ Θ Λ Ξ Π Σ Φ Ψ Ω |
∫ ∑ ∏ √ − ± ∞ ≈ ∝ {{=}} ≡ ≠ ≤ ≥ × · ÷ ∂ ′ ″ ∇ ‰ ° ∴ Ø ø ∈ ∉ ∩ ∪ ⊂ ⊃ ⊆ ⊇ ¬ ∧ ∨ ∃ ∀ ⇒ ⇔ → ↔ ↑ ℵ - – — |
∫ ∑ ∏ √ − ± ∞ ≈ ∝ = ≡ ≠ ≤ ≥ × · ÷ ∂ ′ ″ ∇ ‰ ° ∴ Ø ø ∈ ∉ ∩ ∪ ⊂ ⊃ ⊆ ⊇ ¬ ∧ ∨ ∃ ∀ ⇒ ⇔ → ↔ ↑ ℵ - – — |
The use of HTML instead of TeX is still under discussion. The arguments either way can be summarised as follows.
Pros of TeX
- TeX is semantically superior to HTML. In TeX, "
<math>x</math>
" means "mathematical variable [math]\displaystyle{ x }[/math]", whereas in HTML "x
" could mean anything. Information has been irrevocably lost. - On the other hand, if you encode the same formula as "
{{math|<VAR>x</VAR>}}
", you get the same visual result Template:Math and no information is lost. This requires diligence and more typing that could make the formula harder to understand as you type it. However, since there are far more readers than editors, this effort is worth considering. - TeX has been specifically designed for typesetting formulae, so input is easier and more natural if you are accustomed to it, and output is more aesthetically pleasing if you focus on a single formula rather than on the whole containing page.
- One consequence of point 1 is that TeX code can be transformed into HTML, but not vice-versa.Template:Ref This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX. It is true that the current situation is not ideal, but that is not a good reason to drop information/contents. It is more a reason to help improve the situation.
- Another consequence of point 1 is that TeX can be converted to MathML for browsers which support it, thus keeping its semantics and allowing the rendering to be better suited for the reader’s graphic device.
- When writing in TeX, editors need not worry about whether this or that version of this or that browser supports this or that HTML entity. The burden of these decisions is put on the software. This does not hold for HTML formulae, which can easily end up being rendered wrongly or differently from the editor’s intentions on a different browser.Template:Ref
- More importantly, the serif font used for rendering formulae is browser-dependent and it may be missing some important glyphs. While the browser generally capable to substitute a matching glyph from a different font family, it need not be the case for combined glyphs (compare ‘ Template:IPA ’ and ‘ a̅ ’).
- TeX is the preferred text formatting language of most professional mathematicians, scientists, and engineers. It is easier to persuade them to contribute if they can write in TeX.
- Note: dilHTMLunless your wikitext follows the style of point 2
- Note: browsuppThe entity support problem is not limited to mathematical formulae though; it can be easily solved by using the corresponding characters instead of entities, as the character repertoire links do, except for cases where the corresponding glyphs are visually indiscernible (e.g. – for ‘–’ and − for ‘−’).
Functions, symbols, special characters
Accents/diacritics | |
---|---|
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}
|
[math]\displaystyle{ \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\! }[/math] |
\check{a} \bar{a} \ddot{a} \dot{a}
|
[math]\displaystyle{ \check{a} \bar{a} \ddot{a} \dot{a}\! }[/math] |
Standard functions | |
\sin a \cos b \tan c
|
[math]\displaystyle{ \sin a \cos b \tan c\! }[/math] |
\sec d \csc e \cot f
|
[math]\displaystyle{ \sec d \csc e \cot f\,\! }[/math] |
\arcsin h \arccos i \arctan j
|
[math]\displaystyle{ \arcsin h \arccos i \arctan j\,\! }[/math] |
\sinh k \cosh l \tanh m \coth n\!
|
[math]\displaystyle{ \sinh k \cosh l \tanh m \coth n\! }[/math] |
\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!
|
[math]\displaystyle{ \operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\! }[/math] |
\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t
|
[math]\displaystyle{ \operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t\,\! }[/math] |
\lim u \limsup v \liminf w \min x \max y\!
|
[math]\displaystyle{ \lim u \limsup v \liminf w \min x \max y\! }[/math] |
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!
|
[math]\displaystyle{ \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\! }[/math] |
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n
|
[math]\displaystyle{ \deg h \gcd i \Pr j \det k \hom l \arg m \dim n\! }[/math] |
Modular arithmetic | |
s_k \equiv 0 \pmod{m}
|
[math]\displaystyle{ s_k \equiv 0 \pmod{m}\,\! }[/math] |
a\,\bmod\,b
|
[math]\displaystyle{ a\,\bmod\,b\,\! }[/math] |
Derivatives | |
\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}
|
[math]\displaystyle{ \nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2} }[/math] |
Sets | |
\forall \exists \empty \emptyset \varnothing
|
[math]\displaystyle{ \forall \exists \empty \emptyset \varnothing\,\! }[/math] |
\in \ni \not \in \notin \subset \subseteq \supset \supseteq
|
[math]\displaystyle{ \in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\! }[/math] |
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
|
[math]\displaystyle{ \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\! }[/math] |
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
|
[math]\displaystyle{ \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\! }[/math] |
Operators | |
+ \oplus \bigoplus \pm \mp -
|
[math]\displaystyle{ + \oplus \bigoplus \pm \mp - \,\! }[/math] |
\times \otimes \bigotimes \cdot \circ \bullet \bigodot
|
[math]\displaystyle{ \times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\! }[/math] |
\star * / \div \frac{1}{2}
|
[math]\displaystyle{ \star * / \div \frac{1}{2}\,\! }[/math] |
Logic | |
\land (or \and) \wedge \bigwedge \bar{q} \to p
|
[math]\displaystyle{ \land \wedge \bigwedge \bar{q} \to p\,\! }[/math] |
\lor \vee \bigvee \lnot \neg q \And
|
[math]\displaystyle{ \lor \vee \bigvee \lnot \neg q \And\,\! }[/math] |
Root | |
\sqrt{2} \sqrt[n]{x}
|
[math]\displaystyle{ \sqrt{2} \sqrt[n]{x}\,\! }[/math] |
Relations | |
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}
|
[math]\displaystyle{ \sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}\,\! }[/math] |
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto
|
[math]\displaystyle{ \le \lt \ll \gg \ge \gt \equiv \not\equiv \ne \mbox{or} \neq \propto\,\! }[/math] |
\geqq \geqslant \eqslantgtr \gtrsim \gtrapprox
|
[math]\displaystyle{ \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox }[/math] |
Geometric | |
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ
|
[math]\displaystyle{ \Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\! }[/math] |
Arrows | |
\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow
|
[math]\displaystyle{ \leftarrow \rightarrow \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,\! }[/math] |
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff)
|
[math]\displaystyle{ \Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \! }[/math] |
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow
|
[math]\displaystyle{ \uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow \! }[/math] |
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
|
[math]\displaystyle{ \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\! }[/math] |
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
|
[math]\displaystyle{ \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \,\! }[/math] |
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
|
[math]\displaystyle{ \curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\! }[/math] |
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow
|
[math]\displaystyle{ \mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \,\! }[/math] |
Special | |
\And \eth \S \P \% \dagger \ddagger \ldots \cdots
|
[math]\displaystyle{ \And \eth \S \P \% \dagger \ddagger \ldots \cdots\,\! }[/math] |
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
|
[math]\displaystyle{ \smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\! }[/math] |
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar
|
[math]\displaystyle{ \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\! }[/math] |
\ell \mho \Finv \Re \Im \wp \complement
|
[math]\displaystyle{ \ell \mho \Finv \Re \Im \wp \complement\,\! }[/math] |
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp
|
[math]\displaystyle{ \diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\! }[/math] |
Unsorted (new stuff) | |
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
|
[math]\displaystyle{ \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown }[/math] |
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
|
[math]\displaystyle{ \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge\! }[/math] |
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
|
[math]\displaystyle{ \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes }[/math] |
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
|
[math]\displaystyle{ \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant }[/math] |
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
|
[math]\displaystyle{ \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq }[/math] |
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
|
[math]\displaystyle{ \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft }[/math] |
\Vvdash \bumpeq \Bumpeq \eqsim \gtrdot
|
[math]\displaystyle{ \Vvdash \bumpeq \Bumpeq \eqsim \gtrdot }[/math] |
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
|
[math]\displaystyle{ \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq }[/math] |
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
|
[math]\displaystyle{ \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork }[/math] |
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
|
[math]\displaystyle{ \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq }[/math] |
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
|
[math]\displaystyle{ \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid }[/math] |
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
|
[math]\displaystyle{ \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr }[/math] |
\subsetneq
|
[math]\displaystyle{ \subsetneq }[/math] |
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
|
[math]\displaystyle{ \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq }[/math] |
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
|
[math]\displaystyle{ \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq }[/math] |
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
|
[math]\displaystyle{ \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq }[/math] |
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus
|
[math]\displaystyle{ \jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\! }[/math] |
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq
|
[math]\displaystyle{ \oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\! }[/math] |
\dashv \asymp \doteq \parallel
|
[math]\displaystyle{ \dashv \asymp \doteq \parallel\,\! }[/math] |
\ulcorner \urcorner \llcorner \lrcorner
|
[math]\displaystyle{ \ulcorner \urcorner \llcorner \lrcorner }[/math] |
Larger expressions
Subscripts, superscripts, integrals
Feature | Syntax | How it looks rendered | |
---|---|---|---|
HTML | PNG | ||
Superscript | a^2 |
[math]\displaystyle{ a^2 }[/math] | [math]\displaystyle{ a^2 \,\! }[/math] |
Subscript | a_2 |
[math]\displaystyle{ a_2 }[/math] | [math]\displaystyle{ a_2 \,\! }[/math] |
Grouping | a^{2+2} |
[math]\displaystyle{ a^{2+2} }[/math] | [math]\displaystyle{ a^{2+2}\,\! }[/math] |
a_{i,j} |
[math]\displaystyle{ a_{i,j} }[/math] | [math]\displaystyle{ a_{i,j}\,\! }[/math] | |
Combining sub & super without and with horizontal separation | x_2^3 |
[math]\displaystyle{ x_2^3 }[/math] | [math]\displaystyle{ x_2^3 \,\! }[/math] |
{x_2}^3 |
[math]\displaystyle{ {x_2}^3 }[/math] | [math]\displaystyle{ {x_2}^3 \,\! }[/math] | |
Super super | 10^{10^{ \,\!{8} } |
[math]\displaystyle{ 10^{10^{ \,\! 8 } } }[/math] | |
Super super | 10^{10^{ \overset{8}{} }} |
[math]\displaystyle{ 10^{10^{ \overset{8}{} }} }[/math] | |
Super super (wrong in HTML in some browsers) | 10^{10^8} |
[math]\displaystyle{ 10^{10^8} }[/math] | |
Preceding and/or Additional sub & super | \sideset{_1^2}{_3^4}\prod_a^b |
[math]\displaystyle{ \sideset{_1^2}{_3^4}\prod_a^b }[/math] | |
{}_1^2\!\Omega_3^4 |
[math]\displaystyle{ {}_1^2\!\Omega_3^4 }[/math] | ||
Stacking | \overset{\alpha}{\omega} |
[math]\displaystyle{ \overset{\alpha}{\omega} }[/math] | |
\underset{\alpha}{\omega} |
[math]\displaystyle{ \underset{\alpha}{\omega} }[/math] | ||
\overset{\alpha}{\underset{\gamma}{\omega}} |
[math]\displaystyle{ \overset{\alpha}{\underset{\gamma}{\omega}} }[/math] | ||
\stackrel{\alpha}{\omega} |
[math]\displaystyle{ \stackrel{\alpha}{\omega} }[/math] | ||
Derivative (forced PNG) | x', y'', f', f''\! |
[math]\displaystyle{ x', y'', f', f''\! }[/math] | |
Derivative (f in italics may overlap primes in HTML) | x', y'', f', f'' |
[math]\displaystyle{ x', y'', f', f'' }[/math] | [math]\displaystyle{ x', y'', f', f''\! }[/math] |
Derivative (wrong in HTML) | x^\prime, y^{\prime\prime} |
[math]\displaystyle{ x^\prime, y^{\prime\prime} }[/math] | [math]\displaystyle{ x^\prime, y^{\prime\prime}\,\! }[/math] |
Derivative (wrong in PNG) | x\prime, y\prime\prime |
[math]\displaystyle{ x\prime, y\prime\prime }[/math] | [math]\displaystyle{ x\prime, y\prime\prime\,\! }[/math] |
Derivative dots | \dot{x}, \ddot{x} |
[math]\displaystyle{ \dot{x}, \ddot{x} }[/math] | |
Underlines, overlines, vectors | \hat a \ \bar b \ \vec c |
[math]\displaystyle{ \hat a \ \bar b \ \vec c }[/math] | |
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} |
[math]\displaystyle{ \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} }[/math] | ||
\overline{g h i} \ \underline{j k l} |
[math]\displaystyle{ \overline{g h i} \ \underline{j k l} }[/math] | ||
\not 1 \ \cancel{123} |
[math]\displaystyle{ \not 1 \ \cancel{123} }[/math] | ||
Arrows | A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C |
[math]\displaystyle{ A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C }[/math] | |
Overbraces | \overbrace{ 1+2+\cdots+100 }^{5050} |
[math]\displaystyle{ \overbrace{ 1+2+\cdots+100 }^{5050} }[/math] | |
Underbraces | \underbrace{ a+b+\cdots+z }_{26} |
[math]\displaystyle{ \underbrace{ a+b+\cdots+z }_{26} }[/math] | |
Sum | \sum_{k=1}^N k^2 |
[math]\displaystyle{ \sum_{k=1}^N k^2 }[/math] | |
Sum (force \textstyle ) |
\textstyle \sum_{k=1}^N k^2 |
[math]\displaystyle{ \textstyle \sum_{k=1}^N k^2 }[/math] | |
Product | \prod_{i=1}^N x_i |
[math]\displaystyle{ \prod_{i=1}^N x_i }[/math] | |
Product (force \textstyle ) |
\textstyle \prod_{i=1}^N x_i |
[math]\displaystyle{ \textstyle \prod_{i=1}^N x_i }[/math] | |
Coproduct | \coprod_{i=1}^N x_i |
[math]\displaystyle{ \coprod_{i=1}^N x_i }[/math] | |
Coproduct (force \textstyle ) |
\textstyle \coprod_{i=1}^N x_i |
[math]\displaystyle{ \textstyle \coprod_{i=1}^N x_i }[/math] | |
Limit | \lim_{n \to \infty}x_n |
[math]\displaystyle{ \lim_{n \to \infty}x_n }[/math] | |
Limit (force \textstyle ) |
\textstyle \lim_{n \to \infty}x_n |
[math]\displaystyle{ \textstyle \lim_{n \to \infty}x_n }[/math] | |
Integral | \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx |
[math]\displaystyle{ \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx }[/math] | |
Integral (alternate limits style) | \int_{1}^{3}\frac{e^3/x}{x^2}\, dx |
[math]\displaystyle{ \int_{1}^{3}\frac{e^3/x}{x^2}\, dx }[/math] | |
Integral (force \textstyle ) |
\textstyle \int\limits_{-N}^{N} e^x\, dx |
[math]\displaystyle{ \textstyle \int\limits_{-N}^{N} e^x\, dx }[/math] | |
Integral (force \textstyle , alternate limits style) |
\textstyle \int_{-N}^{N} e^x\, dx |
[math]\displaystyle{ \textstyle \int_{-N}^{N} e^x\, dx }[/math] | |
Double integral | \iint\limits_D \, dx\,dy |
[math]\displaystyle{ \iint\limits_D \, dx\,dy }[/math] | |
Triple integral | \iiint\limits_E \, dx\,dy\,dz |
[math]\displaystyle{ \iiint\limits_E \, dx\,dy\,dz }[/math] | |
Quadruple integral | \iiiint\limits_F \, dx\,dy\,dz\,dt |
[math]\displaystyle{ \iiiint\limits_F \, dx\,dy\,dz\,dt }[/math] | |
Line or path integral | \int_C x^3\, dx + 4y^2\, dy |
[math]\displaystyle{ \int_C x^3\, dx + 4y^2\, dy }[/math] | |
Closed line or path integral | \oint_C x^3\, dx + 4y^2\, dy |
[math]\displaystyle{ \oint_C x^3\, dx + 4y^2\, dy }[/math] | |
Intersections | \bigcap_1^n p |
[math]\displaystyle{ \bigcap_1^n p }[/math] | |
Unions | \bigcup_1^k p |
[math]\displaystyle{ \bigcup_1^k p }[/math] |
Fractions, matrices, multilines
Feature | Syntax | How it looks rendered |
---|---|---|
Fractions | \frac{1}{2}=0.5
|
[math]\displaystyle{ \frac{1}{2}=0.5 }[/math] |
Small Fractions | \tfrac{1}{2} = 0.5
|
[math]\displaystyle{ \tfrac{1}{2} = 0.5 }[/math] |
Large (normal) Fractions | \dfrac{k}{k-1} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{1}{2}}} = a
|
[math]\displaystyle{ \dfrac{k}{k-1} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{1}{2}}} = a }[/math] |
Large (nested) Fractions | \cfrac{2}{c + \cfrac{2}{d + \cfrac{1}{2}}} = a
|
[math]\displaystyle{ \cfrac{2}{c + \cfrac{2}{d + \cfrac{1}{2}}} = a }[/math] |
Binomial coefficients | \binom{n}{k}
|
[math]\displaystyle{ \binom{n}{k} }[/math] |
Small Binomial coefficients | \tbinom{n}{k}
|
[math]\displaystyle{ \tbinom{n}{k} }[/math] |
Large (normal) Binomial coefficients | \dbinom{n}{k}
|
[math]\displaystyle{ \dbinom{n}{k} }[/math] |
Matrices | \begin{matrix} x & y \\ z & v \end{matrix} |
[math]\displaystyle{ \begin{matrix} x & y \\ z & v \end{matrix} }[/math] |
\begin{vmatrix} x & y \\ z & v \end{vmatrix} |
[math]\displaystyle{ \begin{vmatrix} x & y \\ z & v \end{vmatrix} }[/math] | |
\begin{Vmatrix} x & y \\ z & v \end{Vmatrix} |
[math]\displaystyle{ \begin{Vmatrix} x & y \\ z & v \end{Vmatrix} }[/math] | |
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} |
[math]\displaystyle{ \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix} }[/math] | |
\begin{Bmatrix} x & y \\ z & v \end{Bmatrix} |
[math]\displaystyle{ \begin{Bmatrix} x & y \\ z & v \end{Bmatrix} }[/math] | |
\begin{pmatrix} x & y \\ z & v \end{pmatrix} |
[math]\displaystyle{ \begin{pmatrix} x & y \\ z & v \end{pmatrix} }[/math] | |
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) |
[math]\displaystyle{ \bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) }[/math] | |
Case distinctions | f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} |
[math]\displaystyle{ f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} }[/math] |
Multiline equations | \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} |
[math]\displaystyle{ \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} }[/math] |
\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} |
[math]\displaystyle{ \begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} }[/math] | |
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed) | \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
[math]\displaystyle{ \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} }[/math] |
Multiline equations (more) | \begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
[math]\displaystyle{ \begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} }[/math] |
Breaking up a long expression so that it wraps when necessary. | <math>f(x) = \sum_{n=0}^\infty a_n x^n </math> <math>= a_0+a_1x+a_2x^2+\cdots</math> |
[math]\displaystyle{ f(x) = \sum_{n=0}^\infty a_n x^n }[/math][math]\displaystyle{ = a_0 +a_1x+a_2x^2+\cdots }[/math] |
Simultaneous equations | \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} |
[math]\displaystyle{ \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} }[/math] |
Arrays | \begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array} |
[math]\displaystyle{ \begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array} }[/math] |
Parenthesizing big expressions, brackets, bars
Feature | Syntax | How it looks rendered |
---|---|---|
Bad | ( \frac{1}{2} )
|
[math]\displaystyle{ ( \frac{1}{2} ) }[/math] |
Good | \left ( \frac{1}{2} \right )
|
[math]\displaystyle{ \left ( \frac{1}{2} \right ) }[/math] |
You can use various delimiters with \left and \right:
Feature | Syntax | How it looks rendered |
---|---|---|
Parentheses | \left ( \frac{a}{b} \right )
|
[math]\displaystyle{ \left ( \frac{a}{b} \right ) }[/math] |
Brackets | \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
|
[math]\displaystyle{ \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack }[/math] |
Braces | \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
|
[math]\displaystyle{ \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace }[/math] |
Angle brackets | \left \langle \frac{a}{b} \right \rangle
|
[math]\displaystyle{ \left \langle \frac{a}{b} \right \rangle }[/math] |
Bars and double bars | \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|
|
[math]\displaystyle{ \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| }[/math] |
Floor and ceiling functions: | \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil
|
[math]\displaystyle{ \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil }[/math] |
Slashes and backslashes | \left / \frac{a}{b} \right \backslash
|
[math]\displaystyle{ \left / \frac{a}{b} \right \backslash }[/math] |
Up, down and up-down arrows | \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow
|
[math]\displaystyle{ \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow }[/math] |
Delimiters can be mixed, as long as \left and \right match |
\left [ 0,1 \right )</code> <br/> <code>\left \langle \psi \right |
|
[math]\displaystyle{ \left [ 0,1 \right ) }[/math] [math]\displaystyle{ \left \langle \psi \right | }[/math] |
Use \left. and \right. if you don't want a delimiter to appear: |
\left . \frac{A}{B} \right \} \to X
|
[math]\displaystyle{ \left . \frac{A}{B} \right \} \to X }[/math] |
Size of the delimiters | \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]/ |
[math]\displaystyle{ \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big] }[/math] |
\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle
|
[math]\displaystyle{ \big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle }[/math] | |
\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|
|
[math]\displaystyle{ \big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big| }[/math] | |
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil
|
[math]\displaystyle{ \big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil }[/math] | |
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow
|
[math]\displaystyle{ \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow }[/math] | |
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow
|
[math]\displaystyle{ \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow }[/math] | |
\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash
|
[math]\displaystyle{ \big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash }[/math] |
Alphabets and typefaces
Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.
Greek alphabet | |
---|---|
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta
|
[math]\displaystyle{ \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\! }[/math] |
\Eta \Theta \Iota \Kappa \Lambda \Mu
|
[math]\displaystyle{ \Eta \Theta \Iota \Kappa \Lambda \Mu \,\! }[/math] |
\Nu \Xi \Pi \Rho \Sigma \Tau
|
[math]\displaystyle{ \Nu \Xi \Pi \Rho \Sigma \Tau\,\! }[/math] |
\Upsilon \Phi \Chi \Psi \Omega
|
[math]\displaystyle{ \Upsilon \Phi \Chi \Psi \Omega \,\! }[/math] |
\alpha \beta \gamma \delta \epsilon \zeta
|
[math]\displaystyle{ \alpha \beta \gamma \delta \epsilon \zeta \,\! }[/math] |
\eta \theta \iota \kappa \lambda \mu
|
[math]\displaystyle{ \eta \theta \iota \kappa \lambda \mu \,\! }[/math] |
\nu \xi \pi \rho \sigma \tau
|
[math]\displaystyle{ \nu \xi \pi \rho \sigma \tau \,\! }[/math] |
\upsilon \phi \chi \psi \omega
|
[math]\displaystyle{ \upsilon \phi \chi \psi \omega \,\! }[/math] |
\varepsilon \digamma \vartheta \varkappa
|
[math]\displaystyle{ \varepsilon \digamma \vartheta \varkappa \,\! }[/math] |
\varpi \varrho \varsigma \varphi
|
[math]\displaystyle{ \varpi \varrho \varsigma \varphi\,\! }[/math] |
Blackboard Bold/Scripts | |
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}
|
[math]\displaystyle{ \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\! }[/math] |
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}
|
[math]\displaystyle{ \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\! }[/math] |
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}
|
[math]\displaystyle{ \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\! }[/math] |
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}
|
[math]\displaystyle{ \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\! }[/math] |
\C \N \Q \R \Z
|
[math]\displaystyle{ \C \N \Q \R \Z }[/math] |
boldface (vectors) | |
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}
|
[math]\displaystyle{ \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\! }[/math] |
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}
|
[math]\displaystyle{ \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\! }[/math] |
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}
|
[math]\displaystyle{ \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\! }[/math] |
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}
|
[math]\displaystyle{ \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\! }[/math] |
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}
|
[math]\displaystyle{ \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\! }[/math] |
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}
|
[math]\displaystyle{ \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\! }[/math] |
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}
|
[math]\displaystyle{ \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\! }[/math] |
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}
|
[math]\displaystyle{ \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\! }[/math] |
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}
|
[math]\displaystyle{ \mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\! }[/math] |
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}
|
[math]\displaystyle{ \mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\! }[/math] |
Boldface (greek) | |
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}
|
[math]\displaystyle{ \boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\! }[/math] |
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}
|
[math]\displaystyle{ \boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\! }[/math] |
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}
|
[math]\displaystyle{ \boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\! }[/math] |
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}
|
[math]\displaystyle{ \boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\! }[/math] |
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}
|
[math]\displaystyle{ \boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\! }[/math] |
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}
|
[math]\displaystyle{ \boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\! }[/math] |
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}
|
[math]\displaystyle{ \boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\! }[/math] |
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}
|
[math]\displaystyle{ \boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\! }[/math] |
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}
|
[math]\displaystyle{ \boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\! }[/math] |
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}
|
[math]\displaystyle{ \boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\! }[/math] |
Italics | |
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}
|
[math]\displaystyle{ \mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\! }[/math] |
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}
|
[math]\displaystyle{ \mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\! }[/math] |
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}
|
[math]\displaystyle{ \mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\! }[/math] |
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}
|
[math]\displaystyle{ \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\! }[/math] |
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}
|
[math]\displaystyle{ \mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\! }[/math] |
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}
|
[math]\displaystyle{ \mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\! }[/math] |
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}
|
[math]\displaystyle{ \mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\! }[/math] |
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}
|
[math]\displaystyle{ \mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\! }[/math] |
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}
|
[math]\displaystyle{ \mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\! }[/math] |
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}
|
[math]\displaystyle{ \mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\! }[/math] |
Roman typeface | |
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}
|
[math]\displaystyle{ \mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\! }[/math] |
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}
|
[math]\displaystyle{ \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\! }[/math] |
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}
|
[math]\displaystyle{ \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\! }[/math] |
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}
|
[math]\displaystyle{ \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\! }[/math] |
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}
|
[math]\displaystyle{ \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\! }[/math] |
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}
|
[math]\displaystyle{ \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\! }[/math] |
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}
|
[math]\displaystyle{ \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\! }[/math] |
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}
|
[math]\displaystyle{ \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\! }[/math] |
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}
|
[math]\displaystyle{ \mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\! }[/math] |
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}
|
[math]\displaystyle{ \mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\! }[/math] |
Fraktur typeface | |
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}
|
[math]\displaystyle{ \mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\! }[/math] |
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}
|
[math]\displaystyle{ \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\! }[/math] |
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}
|
[math]\displaystyle{ \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\! }[/math] |
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}
|
[math]\displaystyle{ \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\! }[/math] |
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}
|
[math]\displaystyle{ \mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\! }[/math] |
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}
|
[math]\displaystyle{ \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\! }[/math] |
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}
|
[math]\displaystyle{ \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\! }[/math] |
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}
|
[math]\displaystyle{ \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\! }[/math] |
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}
|
[math]\displaystyle{ \mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\! }[/math] |
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}
|
[math]\displaystyle{ \mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\! }[/math] |
Calligraphy/Script | |
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}
|
[math]\displaystyle{ \mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\! }[/math] |
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}
|
[math]\displaystyle{ \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\! }[/math] |
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}
|
[math]\displaystyle{ \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\! }[/math] |
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}
|
[math]\displaystyle{ \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\! }[/math] |
Hebrew | |
\aleph \beth \gimel \daleth
|
[math]\displaystyle{ \aleph \beth \gimel \daleth\,\! }[/math] |
Feature | Syntax | How it looks rendered | |
---|---|---|---|
non-italicised characters | \mbox{abc}
|
[math]\displaystyle{ \mbox{abc} }[/math] | [math]\displaystyle{ \mbox{abc} \,\! }[/math] |
mixed italics (bad) | \mbox{if} n \mbox{is even}
|
[math]\displaystyle{ \mbox{if} n \mbox{is even} }[/math] | [math]\displaystyle{ \mbox{if} n \mbox{is even} \,\! }[/math] |
mixed italics (good) | \mbox{if }n\mbox{ is even}
|
[math]\displaystyle{ \mbox{if }n\mbox{ is even} }[/math] | [math]\displaystyle{ \mbox{if }n\mbox{ is even} \,\! }[/math] |
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) | \mbox{if}~n\ \mbox{is even}
|
[math]\displaystyle{ \mbox{if}~n\ \mbox{is even} }[/math] | [math]\displaystyle{ \mbox{if}~n\ \mbox{is even} \,\! }[/math] |
Color
Equations can use color:
{\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}
- [math]\displaystyle{ {\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1} }[/math]
x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
- [math]\displaystyle{ x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a} }[/math]
It is also possible to change the background color, as in the following example:
Background | Wikicode | Rendering (in PNG) |
---|---|---|
White | e^{i \pi} + 1 = 0
|
[math]\displaystyle{ e^{i \pi} + 1 = 0\,\! }[/math] |
\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0
|
[math]\displaystyle{ \definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0\,\! }[/math] | |
Orange | e^{i \pi} + 1 = 0
|
[math]\displaystyle{ e^{i \pi} + 1 = 0\,\! }[/math] |
\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0
|
[math]\displaystyle{ \definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0\,\! }[/math] |
See here for all named colors supported by LaTeX.
Note that color should not be used as the only way to identify something, because it will become meaningless on black-and-white media or for color-blind people. See en:Wikipedia:Manual of Style#Color coding.
Formatting issues
Spacing
Note that TeX handles most spacing automatically, but you may sometimes want manual control.
Feature | Syntax | How it looks rendered |
---|---|---|
double quad space | a \qquad b
|
[math]\displaystyle{ a \qquad b }[/math] |
quad space | a \quad b
|
[math]\displaystyle{ a \quad b }[/math] |
text space | a\ b
|
[math]\displaystyle{ a\ b }[/math] |
text space without PNG conversion | a \mbox{ } b
|
[math]\displaystyle{ a \mbox{ } b }[/math] |
large space | a\;b
|
[math]\displaystyle{ a\;b }[/math] |
medium space | a\>b
|
[not supported] |
small space | a\,b
|
[math]\displaystyle{ a\,b }[/math] |
no space | ab
|
[math]\displaystyle{ ab\, }[/math] |
small negative space | a\!b
|
[math]\displaystyle{ a\!b }[/math] |
Automatic spacing may be broken in very long expressions (because they produce an overfull hbox in TeX):
<math>0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots</math>
- [math]\displaystyle{ 0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots }[/math]
This can be remedied by putting a pair of braces { } around the whole expression:
<math>{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}</math>
- [math]\displaystyle{ {0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots} }[/math]
Alignment with normal text flow
Due to the default css
img.tex { vertical-align: middle; }
an inline expression like [math]\displaystyle{ \int_{-N}^{N} e^x\, dx }[/math] should look good.
If you need to align it otherwise, use <math style="vertical-align:-100%;">...</math>
and play with the vertical-align
argument until you get it right; however, how it looks may depend on the browser and the browser settings.
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
Forced PNG rendering
To force the formula to render as PNG, add \,
(small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in preferences).
You can also use \,\!
(small space and negative space, which cancel out) anywhere inside the math tags. This does force PNG even in "HTML if possible" mode, unlike \,
.
This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).
For instance:
Syntax | How it looks rendered |
---|---|
a^{c+2}
|
[math]\displaystyle{ a^{\,\!c+2} }[/math] |
a^{c+2} \,
|
[math]\displaystyle{ a^{c+2} \, }[/math] |
a^{\,\!c+2}
|
[math]\displaystyle{ a^{\,\!c+2} }[/math] |
a^{b^{c+2}}
|
[math]\displaystyle{ a^{b^{c+2}} }[/math] (WRONG with option "HTML if possible or else PNG"!) |
a^{b^{c+2}} \,
|
[math]\displaystyle{ a^{b^{c+2}} \, }[/math] (WRONG with option "HTML if possible or else PNG"!) |
a^{b^{c+2}}\approx 5
|
[math]\displaystyle{ a^{b^{c+2}}\approx 5 }[/math] (due to "[math]\displaystyle{ \approx }[/math]" correctly displayed, no code "\,\!" needed) |
a^{b^{\,\!c+2}}
|
[math]\displaystyle{ a^{b^{\,\!c+2}} }[/math] |
\int_{-N}^{N} e^x\, dx
|
[math]\displaystyle{ \int_{-N}^{N} e^x\, dx }[/math] |
This has been tested with most of the formulae on this page, and seems to work perfectly.
You might want to include a comment in the HTML so people don't "correct" the formula by removing it:
- <!-- The \,\! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
Examples
Quadratic Polynomial
[math]\displaystyle{ ax^2 + bx + c = 0 }[/math]
<math>ax^2 + bx + c = 0</math>
Quadratic Polynomial (Force PNG Rendering)
[math]\displaystyle{ ax^2 + bx + c = 0\,\! }[/math]
<math>ax^2 + bx + c = 0\,\!</math>
Quadratic Formula
[math]\displaystyle{ x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} }[/math]
<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
Tall Parentheses and Fractions
[math]\displaystyle{ 2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right) }[/math]
<math>2 = \left(
\frac{\left(3-x\right) \times 2}{3-x}
\right)</math>
[math]\displaystyle{ S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2} }[/math]
<math>S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}</math>
Integrals
[math]\displaystyle{ \int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy }[/math]
<math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds
= \int_a^x f(y)(x-y)\,dy</math>
Summation
[math]\displaystyle{ \sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)} }[/math]
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
{3^m\left(m\,3^n+n\,3^m\right)}</math>
Differential Equation
[math]\displaystyle{ u'' + p(x)u' + q(x)u=f(x),\quad x\gt a }[/math]
<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>
Complex numbers
[math]\displaystyle{ |\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z) }[/math]
<math>|\bar{z}| = |z|,
|(\bar{z})^n| = |z|^n,
\arg(z^n) = n \arg(z)</math>
Limits
[math]\displaystyle{ \lim_{z\rightarrow z_0} f(z)=f(z_0) }[/math]
<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>
Integral Equation
[math]\displaystyle{ \phi_n(\kappa)
= \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR }[/math]
<math>\phi_n(\kappa) =
\frac{1}{4\pi^2\kappa^2} \int_0^\infty
\frac{\sin(\kappa R)}{\kappa R}
\frac{\partial}{\partial R}
\left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>
Example
[math]\displaystyle{ \phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0} }[/math]
<math>\phi_n(\kappa) =
0.033C_n^2\kappa^{-11/3},\quad
\frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>
Continuation and cases
[math]\displaystyle{ f(x) = \begin{cases}1 & -1 \le x \lt 0 \\
\frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise}\end{cases} }[/math]
<math>
f(x) =
\begin{cases}
1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\
1 - x^2 & \mbox{otherwise}
\end{cases}
</math>
Prefixed subscript
[math]\displaystyle{ {}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}\frac{z^n}{n!} }[/math]
<math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
= \sum_{n=0}^\infty
\frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}
\frac{z^n}{n!}</math>
Fraction and small fraction
[math]\displaystyle{ \frac {a}{b} }[/math] [math]\displaystyle{ \tfrac {a}{b} }[/math] <math> \frac {a}{b}\ \tfrac {a}{b} </math>