If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

Ocean loading: Difference between revisions

From Navipedia
Jump to navigation Jump to search
(Created page with "{{Article Infobox2 |Category=Fundamentals |Title={{PAGENAME}} |Authors=J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain. |Level=Basic |...")
 
No edit summary
Line 18: Line 18:
where:
where:


::: <math>\Delta {\mathbf r}</math> is the site displacement vector in (radial, west south) coordinates.
::: <math>\Delta {\mathbf r}</math> is the site displacement vector in (radial, west south) coordinates.
:::<math>j</math> & represents 11 tidal waves: <math>M_2</math>, <math>S_2</math>, <math>N_2</math>, <math>K_2</math>, <math>K_1</math>, <math>O_1</math>, <math>P_1</math>, <math>Q_1</math>, <math>M_f</math>, <math>M_m</math>, <math>S_{sa}</math>.
:::<math>j</math> represents 11 tidal waves: <math>M_2</math>, <math>S_2</math>, <math>N_2</math>, <math>K_2</math>, <math>K_1</math>, <math>O_1</math>, <math>P_1</math>, <math>Q_1</math>, <math>M_f</math>, <math>M_m</math>, <math>S_{sa}</math>.
:::<math>f_j</math>, <math>u_j</math>  depend on the longitude of lunar node.
:::<math>f_j</math>, <math>u_j</math>  depend on the longitude of lunar node.
:::<math>\omega_j</math>  is the tidal angular velocity at time <math>t= 0^h</math>.
:::<math>\omega_j</math>  is the tidal angular velocity at time <math>t= 0^h</math>.
Line 28: Line 28:


The FORTRAN code hardisp.f implementing the full IERS conventions Solid-Tides model is available at ftp://tai.bipm.org/iers/convupdt/chapter7/hardisp.f
The FORTRAN code hardisp.f implementing the full IERS conventions Solid-Tides model is available at ftp://tai.bipm.org/iers/convupdt/chapter7/hardisp.f


This routine computes time series of tidal displacements from a input file containing the ocean loading coefficients for a given station.  These coefficients can be obtained from the ocean loading service under request trough the web site http://www.oso.chalmers.se/loadings
This routine computes time series of tidal displacements from a input file containing the ocean loading coefficients for a given station.  These coefficients can be obtained from the ocean loading service under request trough the web site http://www.oso.chalmers.se/loadings

Revision as of 10:40, 8 August 2011


FundamentalsFundamentals
Title Ocean loading
Author(s) J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain.
Level Basic
Year of Publication 2011

This is a secondary tidal effect, due to the elastic response of the earth's crust to ocean tides, producing deformation of the sea floor and a surface displacement of an adjacent land.

The ocean loading is more localised than the solid earth tides and for convention it does not have permanent part. For kinematic PPP (see Code and Carrier based positioning (PPP)) at the few centimetres accuracy level or few millimetres static PPP over [math]\displaystyle{ 24 }[/math] hours and/or far from the oceans, it can be neglected [Kouba and H_eroux., 2000] [1].

A model for the ocean loading is described in the IERS Conventions document [Denis et al., 2004] [2], page 73, whose simplified version can be summarised as [footnotes 1][3]:

[math]\displaystyle{ \Delta {\mathbf r}= \sum_{j} f_jA_{cj}\cos \left (\omega_jt+\chi_j+u_j-\Phi_{cj} \right ) \qquad\mbox{(1)} }[/math]


where:

[math]\displaystyle{ \Delta {\mathbf r} }[/math] is the site displacement vector in (radial, west south) coordinates.
[math]\displaystyle{ j }[/math] represents 11 tidal waves: [math]\displaystyle{ M_2 }[/math], [math]\displaystyle{ S_2 }[/math], [math]\displaystyle{ N_2 }[/math], [math]\displaystyle{ K_2 }[/math], [math]\displaystyle{ K_1 }[/math], [math]\displaystyle{ O_1 }[/math], [math]\displaystyle{ P_1 }[/math], [math]\displaystyle{ Q_1 }[/math], [math]\displaystyle{ M_f }[/math], [math]\displaystyle{ M_m }[/math], [math]\displaystyle{ S_{sa} }[/math].
[math]\displaystyle{ f_j }[/math], [math]\displaystyle{ u_j }[/math] depend on the longitude of lunar node.
[math]\displaystyle{ \omega_j }[/math] is the tidal angular velocity at time [math]\displaystyle{ t= 0^h }[/math].
[math]\displaystyle{ \chi_j }[/math] is an astronomical argument at time [math]\displaystyle{ t= 0^h }[/math].
[math]\displaystyle{ A_{cj} }[/math] is a station specific amplitude.
[math]\displaystyle{ \varphi_{cj} }[/math] is a station specific phase.


The FORTRAN code hardisp.f implementing the full IERS conventions Solid-Tides model is available at ftp://tai.bipm.org/iers/convupdt/chapter7/hardisp.f

This routine computes time series of tidal displacements from a input file containing the ocean loading coefficients for a given station. These coefficients can be obtained from the ocean loading service under request trough the web site http://www.oso.chalmers.se/loadings


Notes

  1. ^ Additional information describing the model of GIPSY-OASIS II can be found in [Webb and Zumberge, 1993]


References

  1. ^ [Kouba and H_eroux., 2000] Kouba, J. and H_eroux., 2000. GPS Precise Point Positioning using IGS Orbit Products. Geodetic Survey Division, Natural Resources Canada.
  2. ^ [Denis et al., 2004] Denis, D., McCarthy and Petit, G., 2004. IERS Conventions (2003). IERS Technical Note 32.. IERS Convention Center., Frankfurt am Main.
  3. ^ [Webb and Zumberge, 1993] Webb, F. and Zumberge, J., 1993. An Introduction to GIPSY/OASIS-II. Jet Propulsion Laboratory, JPL, 4800 Oak Grove Drive, Pasadena, CA 91109