If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

Combination of GNSS Measurements: Difference between revisions

From Navipedia
Jump to navigation Jump to search
(Created page with "{{Article Infobox2 |Category=Fundamentals |Title={{PAGENAME}} |Authors= J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain. |Level=Medium...")
 
No edit summary
Line 8: Line 8:
}}
}}


Starting from the basic observables (described in [[GNSS basic observables]]} the following combinations can be defined (where <math>R_{_{Pi}}</math> and <math>\Phi_{_{Li}}</math>, <math>i=1,2</math>, indicate measurements in the frequencies <math>f_1</math> and <math>f_2</math>):
Starting from the basic observables (described in [[GNSS Basic Observables]]} the following combinations can be defined (where <math>R_{_{Pi}}</math> and <math>\Phi_{_{Li}}</math>, <math>i=1,2</math>, indicate measurements in the frequencies <math>f_1</math> and <math>f_2</math>):




*'''Ionosphere-free combination''': It removes the first order (up to 99.9\%) ionospheric effect, which depends on the inverse square of the frequency (<math>\alpha_i \propto \frac{1}{f_i^2}</math>, see article [[Ionospheric Delay]]).
*'''Ionosphere-free combination''': It removes the first order (up to 99.9%) ionospheric effect, which depends on the inverse square of the frequency (<math>\alpha_i \propto \frac{1}{f_i^2}</math>, see article [[Ionospheric Delay]]).




Line 19: Line 19:




Satellite clocks are defined relative to <math>R_{_{PC}}</math> combination (see article [[Combining pairs of signals and clock definition]]).


Satellite clocks are defined relative to <math>R_{_{PC}}</math> combination (see article [[Combining pairs of signals and clock definition]]).


*'''Geometry-free combination''': it cancels the geometric part of the measurement, leaving all the frequency-dependent effects (i.e., ionospheric refraction, instrumental delays, wind-up) besides multipath and measurement noise. It can be used to estimate the ionospheric electron content, to detect cycle-slips in the carrier phase, or also to estimate antenna rotations as well. Note the change of terms order in <math>\Phi_{_{LI}}</math> and <math>R_{_{PI}}</math>.
*'''Geometry-free combination''': it cancels the geometric part of the measurement, leaving all the frequency-dependent effects (i.e., ionospheric refraction, instrumental delays, wind-up) besides multipath and measurement noise. It can be used to estimate the ionospheric electron content, to detect cycle-slips in the carrier phase, or also to estimate antenna rotations as well. Note the change of terms order in <math>\Phi_{_{LI}}</math> and <math>R_{_{PI}}</math>.
Line 31: Line 31:




*'''Wide-laning combinations''': These combinations are used to create a signal with a significantly wide wavelength. This longer wavelength is useful for cycle-slips detection and ambiguity fixing. Other feature of this combination is the change of the sign in the ionospheric term, which is exploited by the [[Melbourne-Wübbena combination]] to remove the ionospheric refraction.
*'''Wide-laning combinations''': These combinations are used to create a signal with a significantly wide wavelength. This longer wavelength is useful for cycle-slips detection and ambiguity fixing. Other feature of this combination is the change of the sign in the ionospheric term, which is exploited by the [[Detector based in code and carrier phase data: The Melbourne-Wübbena combination|Melbourne-Wübbena combination]] to remove the ionospheric refraction.




Line 48: Line 48:
R_{_{PN}}=\frac{f_1\;R_{_{P1}}+f_2\;R_{_{P2}}}{f_1+f_2}
R_{_{PN}}=\frac{f_1\;R_{_{P1}}+f_2\;R_{_{P2}}}{f_1+f_2}
</math>
</math>
\end{itemize}





Revision as of 10:14, 5 August 2011


FundamentalsFundamentals
Title Combination of GNSS Measurements
Author(s) J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain.
Level Medium
Year of Publication 2011
Logo gAGE.png


Starting from the basic observables (described in GNSS Basic Observables} the following combinations can be defined (where [math]\displaystyle{ R_{_{Pi}} }[/math] and [math]\displaystyle{ \Phi_{_{Li}} }[/math], [math]\displaystyle{ i=1,2 }[/math], indicate measurements in the frequencies [math]\displaystyle{ f_1 }[/math] and [math]\displaystyle{ f_2 }[/math]):


  • Ionosphere-free combination: It removes the first order (up to 99.9%) ionospheric effect, which depends on the inverse square of the frequency ([math]\displaystyle{ \alpha_i \propto \frac{1}{f_i^2} }[/math], see article Ionospheric Delay).


[math]\displaystyle{ \Phi_{_{LC}}=\frac{f_1^2\;\Phi_{_{L1}}-f_2^2\;\Phi_{_{L2}}}{f_1^2-f_2^2}~~~~~;~~~~~ R_{_{PC}}=\frac{f_1^2\;R_{_{P1}}-f_2^2\;R_{_{P2}}}{f_1^2-f_2^2} }[/math]


Satellite clocks are defined relative to [math]\displaystyle{ R_{_{PC}} }[/math] combination (see article Combining pairs of signals and clock definition).


  • Geometry-free combination: it cancels the geometric part of the measurement, leaving all the frequency-dependent effects (i.e., ionospheric refraction, instrumental delays, wind-up) besides multipath and measurement noise. It can be used to estimate the ionospheric electron content, to detect cycle-slips in the carrier phase, or also to estimate antenna rotations as well. Note the change of terms order in [math]\displaystyle{ \Phi_{_{LI}} }[/math] and [math]\displaystyle{ R_{_{PI}} }[/math].


[math]\displaystyle{ \Phi_{_{LI}}=\Phi_{_{L1}}-\Phi_{_{L2}}~~~~~;~~~~~ R_{_{PI}}=R_{_{P2}}-R_{_{P1}} }[/math]


  • Wide-laning combinations: These combinations are used to create a signal with a significantly wide wavelength. This longer wavelength is useful for cycle-slips detection and ambiguity fixing. Other feature of this combination is the change of the sign in the ionospheric term, which is exploited by the Melbourne-Wübbena combination to remove the ionospheric refraction.


[math]\displaystyle{ \Phi_{_{LW}}=\frac{f_1\;\Phi_{_{L1}}-f_2\;\Phi_{_{L2}}}{f_1-f_2}~~~~~;~~~~~ R_{_{PW}}=\frac{f_1\;R_{_{P1}}-f_2\;R_{_{P2}}}{f_1-f_2} }[/math]


  • Narrow-laning combinations: These combinations create signals with a narrow wavelength. The signal in this combination has a lower noise than each separated component. It is used to reduce the code noise in the Melbourne-Wübbena combination to estimate the wide-lane ambiguity.


[math]\displaystyle{ \Phi_{_{LN}}=\frac{f_1\;\Phi_{_{L1}}+f_2\;\Phi_{_{L2}}}{f_1+f_2}~~~~~;~~~~~ R_{_{PN}}=\frac{f_1\;R_{_{P1}}+f_2\;R_{_{P2}}}{f_1+f_2} }[/math]


For more information, please go to the article:


Notes