If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

RTK Fundamentals: Difference between revisions

From Navipedia
Jump to navigation Jump to search
Line 22: Line 22:
The difficulty in making an RTK system is properly aligning the signals. The carrier phase measurements are extremely precise (down to the fractions of millimeter), but they contain an unknown integer initialization constant, the so-called “phase ambiguity”. Therefore RTK positioning has to resolve integer ambiguities to achieve the high level of precision.
The difficulty in making an RTK system is properly aligning the signals. The carrier phase measurements are extremely precise (down to the fractions of millimeter), but they contain an unknown integer initialization constant, the so-called “phase ambiguity”. Therefore RTK positioning has to resolve integer ambiguities to achieve the high level of precision.


The RTK Algorithm is based in double differenced observables that can eliminate selective availability effects as well as other biases.
The RTK Algorithm is based in double differenced observables that can eliminate selective availability effects as well as other biases. The highlights of the algorithm are described next. At a given epoch, and for a given satellite, the simplified observation equations are the following:




===Ambiguity Resolution===
===Ambiguity Resolution===


==RTK on-going Research ==
==RTK on-going Research ==

Revision as of 08:15, 7 June 2011


FundamentalsFundamentals
Title RTK Fundamentals
Author(s) GMV
Level Basic
Year of Publication 2011
Logo GMV.png


Real Time Kinematic (RTK) satellite navigation is a DGNSS technique used in land survey and in hydrographic survey based on the use of carrier phase measurements of the GPS, GLONASS and/or Galileo signals where a single reference station provides the real-time corrections, providing up to centimetre-level accuracy. When referring to GPS in particular, the system is also commonly referred to as Carrier-Phase Enhancement, CPGPS.

RTK Technique

The classical GNSS receivers compare a C/A code pseudoranges signal being sent from the satellite with an internally generated copy of the same signal. Since the signal from the satellite takes time to reach the receiver, the two signals do not "line up" properly; the satellite's copy is delayed in relation to the local copy. By progressively delaying the local copy more and more, the two signals will eventually line up properly. That delay is the time needed for the signal to reach the receiver, and from this the distance from the satellite can be calculated.

The accuracy of the resulting range measurement is generally a function of the ability of the receiver's electronics to accurately compare the two signals. In general receivers are able to align the signals to about 1% of one bit-width.[1] For instance, the coarse-acquisition (C/A) code sent on the GPS system sends a bit every 0.98 microsecond, so a receiver is accurate to 0.01 microsecond, or about 3 metres in terms of distance. The military-only P(Y) signal sent by the same satellites is clocked ten times as fast, so with similar techniques the receiver will be accurate to about 30 cm. Other effects introduce errors much greater than this, and accuracy based on an uncorrected C/A signal is generally about 15 m.

RTK follows the same general concept, but uses the satellite's carrier phase as its signal, not the messages contained within. The improvement possible using this signal is potentially very high if one continues to assume a 1% accuracy in locking. For instance, the GPS coarse-acquisition (C/A) code broadcast in the L1 signal changes phase at 1.023 MHz, but the L1 carrier itself is 1575.42 MHz, over a thousand times as fast. This frequency corresponds to a wavelength of 19 cm for the L1 signal. Thus a ±1% error in L1 carrier phase measurement corresponds to a ±1.9mm error in baseline estimation.[1]

RTK Algorithm

The difficulty in making an RTK system is properly aligning the signals. The carrier phase measurements are extremely precise (down to the fractions of millimeter), but they contain an unknown integer initialization constant, the so-called “phase ambiguity”. Therefore RTK positioning has to resolve integer ambiguities to achieve the high level of precision.

The RTK Algorithm is based in double differenced observables that can eliminate selective availability effects as well as other biases. The highlights of the algorithm are described next. At a given epoch, and for a given satellite, the simplified observation equations are the following:


Ambiguity Resolution

RTK on-going Research

In recent years first-generation Network RTK services have been developed and they have been established in several countries. These services have proven the practical feasibility of the Network RTK technique and they gained wide acceptance by the user community. Network RTK is emerging as the leading method for precise satellite-based positioning. Based on these experiences the development of second-generation Network RTK systems is under way which will make use of improved algorithms and new transmission standards. A wide range of ongoing and anticipated research is related to Network RTK. Research topics are:

  • hierarchical network design: the contribution of global and regional real-time networks to small-scale Network RTK services;
  • content and format of Network RTK correction messages: Virtual Reference Station (VRS) concept versus broadcast Network RTK concepts;
  • substitution of observation corrections (RTK) by state space information (PPP – Precise Point Positioning)
  • improvement of algorithms for the prediction of atmospheric corrections
  • mitigation of station-dependent errors (mainly multipath) at the reference stations
  • development of quality indicators for network RTK corrections either from the *correction computation itself or based on the observations of additional monitor sites
  • new data communication systems (e.g. internet-based, or Digital Audio Broadcast)
  • inclusion of the future third GPS frequency and the future Galileo system
  • extraction and processing of Network RTK by-products: tropospheric and ionospheric delays, local crustal deformations.

Notes


References