If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

Geometric Range Modelling: Difference between revisions

From Navipedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 9: Line 9:




:: <math>\rho_{rcv}^{sat}=\left\| {\mathbf r}_{rcv}-{\mathbf r}^{sat}\right \|=\sqrt{(x_{rcv}-x^{sat})^2+(y_{rcv}-y^{sat})^2+(z_{rcv}-z^{sat})^2} \qquad \mbox{(1)}</math>
:: <math>\rho_{rcv}^{sat}=\left\|{\mathbf r}^{sat}-{\mathbf r}_{rcv}\right \|=\sqrt{(x^{sat}-x_{rcv})^2+(y^{sat}-y_{rcv})^2+(z^{sat}-z_{rcv})^2} \qquad \mbox{(1)}</math>





Latest revision as of 11:41, 13 January 2013


FundamentalsFundamentals
Title Geometric Range Modelling
Author(s) J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
Level Basic
Year of Publication 2011

The geometric range [math]\displaystyle{ \rho_{rcv}^{sat} }[/math] is the Euclidean distance between the satellite and receiver coordinates at the transmission and reception time, respectively:


[math]\displaystyle{ \rho_{rcv}^{sat}=\left\|{\mathbf r}^{sat}-{\mathbf r}_{rcv}\right \|=\sqrt{(x^{sat}-x_{rcv})^2+(y^{sat}-y_{rcv})^2+(z^{sat}-z_{rcv})^2} \qquad \mbox{(1)} }[/math]


Related Articles

The algorithms to compute the transmission time from the measurement time, the satellite coordinates as well as the geometric-range pre-modelling are provided in the following entries: