If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

Transformation between Terrestrial Frames: Difference between revisions

From Navipedia
Jump to navigation Jump to search
m (Text replace - "|Level=Medium" to "|Level=Intermediate")
No edit summary
Line 1: Line 1:
{{Article Infobox2
{{Article Infobox2
|Category=Fundamentals
|Category=Fundamentals
|Title={{PAGENAME}}
|Authors=J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain.
|Authors=J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain.
|Level=Intermediate
|Level=Intermediate
|YearOfPublication=2011
|YearOfPublication=2011
|Title={{PAGENAME}}
}}
}}
From elemental linear algebra, all transformations between two Cartesian coordinate systems can be decomposed in a shift vector <math> \left ( \Delta \mathbb{\mathbf X}=[\Delta x, \Delta y, \Delta z] \right )</math>, three consecutive rotations around the coordinate axes (<math> \theta_1</math>, <math>\theta_2</math>, <math>\theta_3</math>), and a scale factor (<math>\alpha</math>). That is, they can be described by the following equation, which involves 7 parameters:
From elemental linear algebra, all transformations between two Cartesian coordinate systems can be decomposed in a shift vector <math> \left ( \Delta \mathbb{\mathbf X}=[\Delta x, \Delta y, \Delta z] \right )</math>, three consecutive rotations around the coordinate axes (<math> \theta_1</math>, <math>\theta_2</math>, <math>\theta_3</math>), and a scale factor (<math>\alpha</math>). That is, they can be described by the following equation, which involves 7 parameters:
Line 17: Line 17:
<math>
<math>
\begin{array}{l}
\begin{array}{l}
\mathbb{\mathbf R_1}[\theta]=\left [
\mathbb{\mathbf R}_1[\theta]=\left [
\begin{array}{ccc}
\begin{array}{ccc}
1 & 0 & 0\\
1 & 0 & 0\\

Revision as of 12:34, 16 January 2012


FundamentalsFundamentals
Title Transformation between Terrestrial Frames
Author(s) J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain.
Level Intermediate
Year of Publication 2011

From elemental linear algebra, all transformations between two Cartesian coordinate systems can be decomposed in a shift vector [math]\displaystyle{ \left ( \Delta \mathbb{\mathbf X}=[\Delta x, \Delta y, \Delta z] \right ) }[/math], three consecutive rotations around the coordinate axes ([math]\displaystyle{ \theta_1 }[/math], [math]\displaystyle{ \theta_2 }[/math], [math]\displaystyle{ \theta_3 }[/math]), and a scale factor ([math]\displaystyle{ \alpha }[/math]). That is, they can be described by the following equation, which involves 7 parameters:


[math]\displaystyle{ \mathbb{\mathbf X}_{TRF2}=\Delta\mathbb{\mathbf X}+\alpha \; \mathbb{\mathbf R}_1[\theta_1] \; \mathbb{\mathbf R}_2[\theta_2] \; \mathbb{\mathbf R}_3[\theta_3] \; \mathbb{\mathbf X}_{TRF1} \qquad\mbox{(1)} }[/math]


where:

[math]\displaystyle{ \begin{array}{l} \mathbb{\mathbf R}_1[\theta]=\left [ \begin{array}{ccc} 1 & 0 & 0\\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \\ \end{array} \right ] \;;\;\; \mathbb{\mathbf R}_2[\theta]=\left [ \begin{array}{ccc} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0\\ \sin \theta &0 & \cos \theta \\ \end{array} \right ]\\ \\ \mathbb{\mathbf R}_3[\theta]=\left [ \begin{array}{ccc} \cos \theta & \sin \theta &0\\ -\sin \theta & \cos \theta & 0\\ 0 & 0 & 1\\ \end{array} \right ] \end{array} \qquad\mbox{(2)} }[/math]


Adopting the convention used by IERS, the previous equation (1) can be written as follows:


[math]\displaystyle{ \left ( \begin{array}{c} x\\ y\\ z\\ \end{array} \right )_{_{TRF2}} = \left ( \begin{array}{c} x\\ y\\ z\\ \end{array} \right )_{_{TRF1}} + \left ( \begin{array}{c} T_1\\ T_2\\ T_3\\ \end{array} \right ) + \left ( \begin{array}{ccc} D & -R_3 & R_2\\ R_3 & D & -R_1\\ -R_2 & R_1 & D\\ \end{array} \right ) \left ( \begin{array}{c} x\\ y\\ z\\ \end{array} \right )_{_{TRF1}} \qquad\mbox{(3)} }[/math]


where [math]\displaystyle{ T_1 }[/math], [math]\displaystyle{ T_2 }[/math], [math]\displaystyle{ T_3 }[/math] are three translation parameters, [math]\displaystyle{ D }[/math] is a scale factor and [math]\displaystyle{ R_1 }[/math], [math]\displaystyle{ R_2 }[/math] and [math]\displaystyle{ R_3 }[/math] are three rotation angles.

Transformation parameters from ITRF2000 to pats ITRFs are listed in table 4.1 of IERS Conventions (2003) [Denis et al., 2004].[1]


References

  1. ^ [Denis et al., 2004] Denis, D., McCarthy and Petit, G., 2004. IERS Conventions (2003). IERS Technical Note 32.. IERS Convention Center., Frankfurt am Main.