If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

WAAS User Segment: Difference between revisions

From Navipedia
Jump to navigation Jump to search
Line 12: Line 12:
==WAAS User Segment==
==WAAS User Segment==


The user segment is mainly any user with a WAAS-enabled GPS receiver that uses the WAAS corrections from the Space segment to compute a reliable position. The WAAS User segment is not under the control of the WAAS service provider, FAA, as it is driven by the WAAS application market. In general, the WAAS service operator provides different services aiming at different market sectors, namely an Open Service, a Safety of Life service (SoL) and even a Commercial Service.<ref>[[SBAS Fundamentals]]</ref>
 
Although orignally developed for aviation, WAAS is not just limited to the aviation industry, any user with a WAAS-enabled GPS receiver will be able to benefit from WAAS correction data from Space segment, making the GPS positioning more accurate and reliable.
 
The WAAS User segment is not under the control of the WAAS service provider, FAA, as it is driven by the WAAS application market. In general, the WAAS service operator provides different services aiming at different market sectors, namely an Open Service, a Safety of Life service (SoL) and even a Commercial Service.<ref>[[SBAS Fundamentals]]</ref>


For the Safety-of-Life (SoL) service, WAAS users include any aircraft with approved WAAS avionics using a WAAS-enabled GPS receiver. The WAAS user equipment shall be compliant (certified) against several standards, i.e. RTCA MOPS DO 229  (see article [[SBAS Standards]]). The SoL civil aviation certified equipment is in the highest rank with respect its cost. There exist a large number of certified receivers manufacturers worldwide, in the US: GARMIN, Honeywell, Rockwell Collins, General Avionics, etc. The Open Service (OS) targets low cost, general purpose GPS equipment that uses the WAAS Signal-In-Space (SIS) to provide the user with an enhanced accuracy performance in comparison with the one provided by a standalone GPS device. In comparison with the certification requirements of the SoL user equipment, user equipment is not necessarily compliant with the RTCA MOPS DO 229 processing rules, but might only make use of the processing algorithms that render the accuracy corrections provided by the SBAS SIS.
For the Safety-of-Life (SoL) service, WAAS users include any aircraft with approved WAAS avionics using a WAAS-enabled GPS receiver. The WAAS user equipment shall be compliant (certified) against several standards, i.e. RTCA MOPS DO 229  (see article [[SBAS Standards]]). The SoL civil aviation certified equipment is in the highest rank with respect its cost. There exist a large number of certified receivers manufacturers worldwide, in the US: GARMIN, Honeywell, Rockwell Collins, General Avionics, etc. The Open Service (OS) targets low cost, general purpose GPS equipment that uses the WAAS Signal-In-Space (SIS) to provide the user with an enhanced accuracy performance in comparison with the one provided by a standalone GPS device. In comparison with the certification requirements of the SoL user equipment, user equipment is not necessarily compliant with the RTCA MOPS DO 229 processing rules, but might only make use of the processing algorithms that render the accuracy corrections provided by the SBAS SIS.

Revision as of 13:07, 26 July 2011


WAASWAAS
Title WAAS User Segment
Author(s) GMV.
Level Basic
Year of Publication 2011
Logo GMV.png


The Wide Area Augmentation System (WAAS) is the United States Satellite Based Augmentation System. The programme, started in 1992, is being carried out by the Federal Aviation Agency (FAA)[1] and is specially developed for the civil aviation community.[2] The system, which was declared operational in late 2003,[3] currently supports thousands of aircraft instrument approaches in more than one thousand airports in USA and Canada.[4] WAAS service area includes CONUS, Alaska, Canada and Mexico.[5] The WAAS programme is continuously in evolution; two development phases have been already covered, a third is in progress, and there are plans to improve the capability of the system in parallel with the evolution of the SBAS standards towards a dual-frequency augmentation service.[6]

WAAS User Segment

Although orignally developed for aviation, WAAS is not just limited to the aviation industry, any user with a WAAS-enabled GPS receiver will be able to benefit from WAAS correction data from Space segment, making the GPS positioning more accurate and reliable.

The WAAS User segment is not under the control of the WAAS service provider, FAA, as it is driven by the WAAS application market. In general, the WAAS service operator provides different services aiming at different market sectors, namely an Open Service, a Safety of Life service (SoL) and even a Commercial Service.[7]

For the Safety-of-Life (SoL) service, WAAS users include any aircraft with approved WAAS avionics using a WAAS-enabled GPS receiver. The WAAS user equipment shall be compliant (certified) against several standards, i.e. RTCA MOPS DO 229 (see article SBAS Standards). The SoL civil aviation certified equipment is in the highest rank with respect its cost. There exist a large number of certified receivers manufacturers worldwide, in the US: GARMIN, Honeywell, Rockwell Collins, General Avionics, etc. The Open Service (OS) targets low cost, general purpose GPS equipment that uses the WAAS Signal-In-Space (SIS) to provide the user with an enhanced accuracy performance in comparison with the one provided by a standalone GPS device. In comparison with the certification requirements of the SoL user equipment, user equipment is not necessarily compliant with the RTCA MOPS DO 229 processing rules, but might only make use of the processing algorithms that render the accuracy corrections provided by the SBAS SIS.

Notes

References