If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor
WARTK Fundamentals: Difference between revisions
Line 12: | Line 12: | ||
==WARTK Technique== | ==WARTK Technique== | ||
In [[RTK Fundamentals|RTK technique]] the differential ionospheric refraction on the signals typically limits the real-time ambiguity resolution (and the corresponding navigation with sub-decimeter errors) to baselines of few tens of km from the nearest reference site. The main techniques supporting this new approach, WARTK, are related to an accurate real-time computation of ionospheric corrections, combined with an optimal processing of GNSS observables (carrier phases in particular) in both 2 and 3-frequency GNSS systems. The navigation can be performed with few centimeters of error at distances of hundreds of kilometers from the nearest reference station. | In [[RTK Fundamentals|RTK technique]] the differential ionospheric refraction on the signals typically limits the real-time ambiguity resolution (and the corresponding navigation with sub-decimeter errors) to baselines of few tens of km from the nearest reference site. The main techniques supporting this new approach, '''WARTK''', are related to an accurate real-time computation of ionospheric corrections, combined with an optimal processing of GNSS observables (carrier phases in particular) in both 2 and 3-frequency GNSS systems. The navigation can be performed with few centimeters of error at distances of hundreds of kilometers from the nearest reference station. | ||
Revision as of 09:20, 10 June 2011
Fundamentals | |
---|---|
Title | WARTK Fundamentals |
Author(s) | GMV |
Level | Basic |
Year of Publication | 2011 |
The Wide Area RTK concept was introduced in the late 1990s to address RTK deficiencies by the Research Group of Astronomy and Geomatics (gAGE) from the Technical University of Catalonia (UPC). The WARTK method dramatically increases the RTK/NRTK service area, with permanent stations separated by up to 500–900 kilometers — all while requiring 100 to 1,000 times fewer receivers covering a given region.
WARTK Technique
In RTK technique the differential ionospheric refraction on the signals typically limits the real-time ambiguity resolution (and the corresponding navigation with sub-decimeter errors) to baselines of few tens of km from the nearest reference site. The main techniques supporting this new approach, WARTK, are related to an accurate real-time computation of ionospheric corrections, combined with an optimal processing of GNSS observables (carrier phases in particular) in both 2 and 3-frequency GNSS systems. The navigation can be performed with few centimeters of error at distances of hundreds of kilometers from the nearest reference station.
WARTK Algorithms
Notes