If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

APPROVED
Vicente.Navarro approved this page 14 July
14 July

Transformation between Terrestrial Frames: Difference between revisions

From Navipedia
Jump to navigation Jump to search
m (Text replace - "|Level=Medium" to "|Level=Intermediate")
No edit summary
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Article Infobox2
{{Article Infobox2
|Category=Fundamentals
|Category=Fundamentals
|Title={{PAGENAME}}
|Authors=J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
|Authors=J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain.
|Level=Intermediate
|Level=Intermediate
|YearOfPublication=2011
|YearOfPublication=2011
|Title={{PAGENAME}}
}}
}}
From elemental linear algebra, all transformations between two Cartesian coordinate systems can be decomposed in a shift vector <math> \left ( \Delta \mathbb{\mathbf X}=[\Delta x, \Delta y, \Delta z] \right )</math>, three consecutive rotations around the coordinate axes (<math> \theta_1</math>, <math>\theta_2</math>, <math>\theta_3</math>), and a scale factor (<math>\alpha</math>). That is, they can be described by the following equation, which involves 7 parameters:
From elemental linear algebra, all transformations between two Cartesian coordinate systems can be decomposed in a shift vector <math> \left ( \Delta \mathbb{\mathbf X}=[\Delta x, \Delta y, \Delta z] \right )</math>, three consecutive rotations around the coordinate axes (<math> \theta_1</math>, <math>\theta_2</math>, <math>\theta_3</math>), and a scale factor (<math>\alpha</math>). That is, they can be described by the following equation, which involves 7 parameters:
Line 17: Line 17:
<math>
<math>
\begin{array}{l}
\begin{array}{l}
\mathbb{\mathbf R_1}[\theta]=\left [
\mathbb{\mathbf R}_1[\theta]=\left [
\begin{array}{ccc}
\begin{array}{ccc}
1 & 0 & 0\\
1 & 0 & 0\\
Line 89: Line 89:
where <math>T_1</math>, <math>T_2</math>, <math>T_3</math> are three translation parameters, <math>D</math> is a scale factor and <math>R_1</math>, <math>R_2</math> and <math>R_3</math> are three rotation angles.
where <math>T_1</math>, <math>T_2</math>, <math>T_3</math> are three translation parameters, <math>D</math> is a scale factor and <math>R_1</math>, <math>R_2</math> and <math>R_3</math> are three rotation angles.


Transformation parameters from ITRF2000 to pats ITRFs are listed in table 4.1 of  IERS Conventions (2003) [Denis et al., 2004].<ref> [Denis et al., 2004] Denis, D., McCarthy and Petit, G., 2004. IERS Conventions (2003). IERS Technical Note 32.. IERS Convention Center., Frankfurt am Main.</ref>
Transformation parameters from ITRF2000 to past ITRFs are listed in table 4.1 of  IERS Conventions (2003) [Denis et al., 2004].<ref> [Denis et al., 2004] Denis, D., McCarthy and Petit, G., 2004. IERS Conventions (2003). IERS Technical Note 32. IERS Convention Center., Frankfurt am Main.</ref>





Latest revision as of 11:41, 23 February 2012


FundamentalsFundamentals
Title Transformation between Terrestrial Frames
Author(s) J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
Level Intermediate
Year of Publication 2011

From elemental linear algebra, all transformations between two Cartesian coordinate systems can be decomposed in a shift vector [math]\displaystyle{ \left ( \Delta \mathbb{\mathbf X}=[\Delta x, \Delta y, \Delta z] \right ) }[/math], three consecutive rotations around the coordinate axes ([math]\displaystyle{ \theta_1 }[/math], [math]\displaystyle{ \theta_2 }[/math], [math]\displaystyle{ \theta_3 }[/math]), and a scale factor ([math]\displaystyle{ \alpha }[/math]). That is, they can be described by the following equation, which involves 7 parameters:


[math]\displaystyle{ \mathbb{\mathbf X}_{TRF2}=\Delta\mathbb{\mathbf X}+\alpha \; \mathbb{\mathbf R}_1[\theta_1] \; \mathbb{\mathbf R}_2[\theta_2] \; \mathbb{\mathbf R}_3[\theta_3] \; \mathbb{\mathbf X}_{TRF1} \qquad\mbox{(1)} }[/math]


where:

[math]\displaystyle{ \begin{array}{l} \mathbb{\mathbf R}_1[\theta]=\left [ \begin{array}{ccc} 1 & 0 & 0\\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \\ \end{array} \right ] \;;\;\; \mathbb{\mathbf R}_2[\theta]=\left [ \begin{array}{ccc} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0\\ \sin \theta &0 & \cos \theta \\ \end{array} \right ]\\ \\ \mathbb{\mathbf R}_3[\theta]=\left [ \begin{array}{ccc} \cos \theta & \sin \theta &0\\ -\sin \theta & \cos \theta & 0\\ 0 & 0 & 1\\ \end{array} \right ] \end{array} \qquad\mbox{(2)} }[/math]


Adopting the convention used by IERS, the previous equation (1) can be written as follows:


[math]\displaystyle{ \left ( \begin{array}{c} x\\ y\\ z\\ \end{array} \right )_{_{TRF2}} = \left ( \begin{array}{c} x\\ y\\ z\\ \end{array} \right )_{_{TRF1}} + \left ( \begin{array}{c} T_1\\ T_2\\ T_3\\ \end{array} \right ) + \left ( \begin{array}{ccc} D & -R_3 & R_2\\ R_3 & D & -R_1\\ -R_2 & R_1 & D\\ \end{array} \right ) \left ( \begin{array}{c} x\\ y\\ z\\ \end{array} \right )_{_{TRF1}} \qquad\mbox{(3)} }[/math]


where [math]\displaystyle{ T_1 }[/math], [math]\displaystyle{ T_2 }[/math], [math]\displaystyle{ T_3 }[/math] are three translation parameters, [math]\displaystyle{ D }[/math] is a scale factor and [math]\displaystyle{ R_1 }[/math], [math]\displaystyle{ R_2 }[/math] and [math]\displaystyle{ R_3 }[/math] are three rotation angles.

Transformation parameters from ITRF2000 to past ITRFs are listed in table 4.1 of IERS Conventions (2003) [Denis et al., 2004].[1]


References

  1. ^ [Denis et al., 2004] Denis, D., McCarthy and Petit, G., 2004. IERS Conventions (2003). IERS Technical Note 32. IERS Convention Center., Frankfurt am Main.