If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor
Help:Math: Difference between revisions
m (→Syntax) |
mNo edit summary |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
MediaWiki uses a subset of TeX markup, including some extensions from LaTeX and AMS-LaTeX, for mathematical formulae. It generates either PNG images or simple HTML markup, depending on user preferences and the complexity of the expression. | |||
More precisely, MediaWiki filters the markup through Texvc, which in turn passes the commands to TeX for the actual rendering. Thus, only a limited part of the full TeX language is supported; see below for details. | |||
More precisely, MediaWiki filters the markup through | |||
__TOC__ | __TOC__ | ||
Line 16: | Line 11: | ||
===Rendering=== | ===Rendering=== | ||
The PNG images are black on white (not transparent | The PNG images are black on white (not transparent). These colors, as well as font sizes and types, are independent of browser settings or CSS. Font sizes and types will often deviate from what HTML renders. Vertical alignment with the surrounding text can also be a problem. | ||
The <code>alt</code> attribute of the PNG images (the text that is displayed if your browser can't display images; Internet Explorer shows it up in the hover box) is the wikitext that produced them, excluding the <code><nowiki><math></nowiki></code> and <code><nowiki></math></nowiki></code>. | The <code>alt</code> attribute of the PNG images (the text that is displayed if your browser can't display images; Internet Explorer shows it up in the hover box) is the wikitext that produced them, excluding the <code><nowiki><math></nowiki></code> and <code><nowiki></math></nowiki></code>. | ||
Line 30: | Line 24: | ||
*<math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}</math> | *<math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}</math> | ||
*<math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}\,</math> | *<math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}\,</math> | ||
Nevertheless, using <code>\mbox</code> instead of <code>\text</code>, more characters are allowed | Nevertheless, using <code>\mbox</code> instead of <code>\text</code>, more characters are allowed | ||
Line 46: | Line 38: | ||
* <math>\mbox {ð}</math> | * <math>\mbox {ð}</math> | ||
* <math>\mbox {þ}</math> | * <math>\mbox {þ}</math> | ||
== Functions, symbols, special characters == | == Functions, symbols, special characters == | ||
Line 742: | Line 643: | ||
== Alphabets and typefaces == | == Alphabets and typefaces == | ||
Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. | |||
For others, such as | For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas. | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 1,036: | Line 937: | ||
See here for [http://oregonstate.edu/%7Epeterseb/tex/samples/docs/color-package-demo.pdf all named colors] supported by LaTeX. | See here for [http://oregonstate.edu/%7Epeterseb/tex/samples/docs/color-package-demo.pdf all named colors] supported by LaTeX. | ||
Note that color should not be used as the ''only'' way to identify something, because it will become meaningless on black-and-white media or for color-blind people | Note that color should not be used as the ''only'' way to identify something, because it will become meaningless on black-and-white media or for color-blind people. | ||
== Formatting issues == | == Formatting issues == | ||
Line 1,252: | Line 1,153: | ||
</center> | </center> | ||
[[Category:Help]] | |||
Latest revision as of 13:07, 20 March 2012
MediaWiki uses a subset of TeX markup, including some extensions from LaTeX and AMS-LaTeX, for mathematical formulae. It generates either PNG images or simple HTML markup, depending on user preferences and the complexity of the expression.
More precisely, MediaWiki filters the markup through Texvc, which in turn passes the commands to TeX for the actual rendering. Thus, only a limited part of the full TeX language is supported; see below for details.
Technicals
Syntax
Math markup goes inside the math: <math> ... </math>
tag.
Similar to HTML, in TeX extra spaces and newlines are ignored.
Rendering
The PNG images are black on white (not transparent). These colors, as well as font sizes and types, are independent of browser settings or CSS. Font sizes and types will often deviate from what HTML renders. Vertical alignment with the surrounding text can also be a problem.
The alt
attribute of the PNG images (the text that is displayed if your browser can't display images; Internet Explorer shows it up in the hover box) is the wikitext that produced them, excluding the <math>
and </math>
.
Apart from function and operator names, as is customary in mathematics for variables, letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use \text
, \mbox
, or \mathrm
. You can also define new function names using \operatorname{...}
. For example, <math>\text{abc}</math>
gives [math]\displaystyle{ \text{abc} }[/math]. This does not work for special characters, they are ignored unless the whole <math> expression is rendered in HTML:
- <math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}</math>
- <math>\text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}\,</math>
gives:
- [math]\displaystyle{ \text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ} }[/math]
- [math]\displaystyle{ \text {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}\, }[/math]
Nevertheless, using \mbox
instead of \text
, more characters are allowed
For example,
- <math>\mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ}</math>
- <math>\mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ}\,</math>
gives:
- [math]\displaystyle{ \mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ} }[/math]
- [math]\displaystyle{ \mbox {abcdefghijklmnopqrstuvwxyzàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýÿ}\, }[/math]
But \mbox{ð}
and \mbox{þ}
will give an error:
- [math]\displaystyle{ \mbox {ð} }[/math]
- [math]\displaystyle{ \mbox {þ} }[/math]
Functions, symbols, special characters
Accents/diacritics | |
---|---|
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}
|
[math]\displaystyle{ \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\! }[/math] |
\check{a} \bar{a} \ddot{a} \dot{a}
|
[math]\displaystyle{ \check{a} \bar{a} \ddot{a} \dot{a}\! }[/math] |
Standard functions | |
\sin a \cos b \tan c
|
[math]\displaystyle{ \sin a \cos b \tan c\! }[/math] |
\sec d \csc e \cot f
|
[math]\displaystyle{ \sec d \csc e \cot f\,\! }[/math] |
\arcsin h \arccos i \arctan j
|
[math]\displaystyle{ \arcsin h \arccos i \arctan j\,\! }[/math] |
\sinh k \cosh l \tanh m \coth n\!
|
[math]\displaystyle{ \sinh k \cosh l \tanh m \coth n\! }[/math] |
\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!
|
[math]\displaystyle{ \operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\! }[/math] |
\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t
|
[math]\displaystyle{ \operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t\,\! }[/math] |
\lim u \limsup v \liminf w \min x \max y\!
|
[math]\displaystyle{ \lim u \limsup v \liminf w \min x \max y\! }[/math] |
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!
|
[math]\displaystyle{ \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\! }[/math] |
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n
|
[math]\displaystyle{ \deg h \gcd i \Pr j \det k \hom l \arg m \dim n\! }[/math] |
Modular arithmetic | |
s_k \equiv 0 \pmod{m}
|
[math]\displaystyle{ s_k \equiv 0 \pmod{m}\,\! }[/math] |
a\,\bmod\,b
|
[math]\displaystyle{ a\,\bmod\,b\,\! }[/math] |
Derivatives | |
\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}
|
[math]\displaystyle{ \nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2} }[/math] |
Sets | |
\forall \exists \empty \emptyset \varnothing
|
[math]\displaystyle{ \forall \exists \empty \emptyset \varnothing\,\! }[/math] |
\in \ni \not \in \notin \subset \subseteq \supset \supseteq
|
[math]\displaystyle{ \in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\! }[/math] |
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
|
[math]\displaystyle{ \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\! }[/math] |
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
|
[math]\displaystyle{ \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\! }[/math] |
Operators | |
+ \oplus \bigoplus \pm \mp -
|
[math]\displaystyle{ + \oplus \bigoplus \pm \mp - \,\! }[/math] |
\times \otimes \bigotimes \cdot \circ \bullet \bigodot
|
[math]\displaystyle{ \times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\! }[/math] |
\star * / \div \frac{1}{2}
|
[math]\displaystyle{ \star * / \div \frac{1}{2}\,\! }[/math] |
Logic | |
\land (or \and) \wedge \bigwedge \bar{q} \to p
|
[math]\displaystyle{ \land \wedge \bigwedge \bar{q} \to p\,\! }[/math] |
\lor \vee \bigvee \lnot \neg q \And
|
[math]\displaystyle{ \lor \vee \bigvee \lnot \neg q \And\,\! }[/math] |
Root | |
\sqrt{2} \sqrt[n]{x}
|
[math]\displaystyle{ \sqrt{2} \sqrt[n]{x}\,\! }[/math] |
Relations | |
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}
|
[math]\displaystyle{ \sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}\,\! }[/math] |
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto
|
[math]\displaystyle{ \le \lt \ll \gg \ge \gt \equiv \not\equiv \ne \mbox{or} \neq \propto\,\! }[/math] |
\geqq \geqslant \eqslantgtr \gtrsim \gtrapprox
|
[math]\displaystyle{ \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox }[/math] |
Geometric | |
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ
|
[math]\displaystyle{ \Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\! }[/math] |
Arrows | |
\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow
|
[math]\displaystyle{ \leftarrow \rightarrow \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,\! }[/math] |
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff)
|
[math]\displaystyle{ \Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \! }[/math] |
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow
|
[math]\displaystyle{ \uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow \! }[/math] |
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
|
[math]\displaystyle{ \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\! }[/math] |
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
|
[math]\displaystyle{ \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \,\! }[/math] |
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
|
[math]\displaystyle{ \curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\! }[/math] |
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow
|
[math]\displaystyle{ \mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \,\! }[/math] |
Special | |
\And \eth \S \P \% \dagger \ddagger \ldots \cdots
|
[math]\displaystyle{ \And \eth \S \P \% \dagger \ddagger \ldots \cdots\,\! }[/math] |
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
|
[math]\displaystyle{ \smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\! }[/math] |
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar
|
[math]\displaystyle{ \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\! }[/math] |
\ell \mho \Finv \Re \Im \wp \complement
|
[math]\displaystyle{ \ell \mho \Finv \Re \Im \wp \complement\,\! }[/math] |
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp
|
[math]\displaystyle{ \diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\! }[/math] |
Unsorted (new stuff) | |
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
|
[math]\displaystyle{ \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown }[/math] |
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
|
[math]\displaystyle{ \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge\! }[/math] |
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
|
[math]\displaystyle{ \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes }[/math] |
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
|
[math]\displaystyle{ \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant }[/math] |
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
|
[math]\displaystyle{ \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq }[/math] |
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
|
[math]\displaystyle{ \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft }[/math] |
\Vvdash \bumpeq \Bumpeq \eqsim \gtrdot
|
[math]\displaystyle{ \Vvdash \bumpeq \Bumpeq \eqsim \gtrdot }[/math] |
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
|
[math]\displaystyle{ \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq }[/math] |
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
|
[math]\displaystyle{ \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork }[/math] |
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
|
[math]\displaystyle{ \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq }[/math] |
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
|
[math]\displaystyle{ \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid }[/math] |
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
|
[math]\displaystyle{ \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr }[/math] |
\subsetneq
|
[math]\displaystyle{ \subsetneq }[/math] |
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
|
[math]\displaystyle{ \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq }[/math] |
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
|
[math]\displaystyle{ \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq }[/math] |
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
|
[math]\displaystyle{ \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq }[/math] |
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus
|
[math]\displaystyle{ \jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\! }[/math] |
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq
|
[math]\displaystyle{ \oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\! }[/math] |
\dashv \asymp \doteq \parallel
|
[math]\displaystyle{ \dashv \asymp \doteq \parallel\,\! }[/math] |
\ulcorner \urcorner \llcorner \lrcorner
|
[math]\displaystyle{ \ulcorner \urcorner \llcorner \lrcorner }[/math] |
Larger expressions
Subscripts, superscripts, integrals
Feature | Syntax | How it looks rendered | |
---|---|---|---|
HTML | PNG | ||
Superscript | a^2 |
[math]\displaystyle{ a^2 }[/math] | [math]\displaystyle{ a^2 \,\! }[/math] |
Subscript | a_2 |
[math]\displaystyle{ a_2 }[/math] | [math]\displaystyle{ a_2 \,\! }[/math] |
Grouping | a^{2+2} |
[math]\displaystyle{ a^{2+2} }[/math] | [math]\displaystyle{ a^{2+2}\,\! }[/math] |
a_{i,j} |
[math]\displaystyle{ a_{i,j} }[/math] | [math]\displaystyle{ a_{i,j}\,\! }[/math] | |
Combining sub & super without and with horizontal separation | x_2^3 |
[math]\displaystyle{ x_2^3 }[/math] | [math]\displaystyle{ x_2^3 \,\! }[/math] |
{x_2}^3 |
[math]\displaystyle{ {x_2}^3 }[/math] | [math]\displaystyle{ {x_2}^3 \,\! }[/math] | |
Super super | 10^{10^{ \,\!{8} } |
[math]\displaystyle{ 10^{10^{ \,\! 8 } } }[/math] | |
Super super | 10^{10^{ \overset{8}{} }} |
[math]\displaystyle{ 10^{10^{ \overset{8}{} }} }[/math] | |
Super super (wrong in HTML in some browsers) | 10^{10^8} |
[math]\displaystyle{ 10^{10^8} }[/math] | |
Preceding and/or Additional sub & super | \sideset{_1^2}{_3^4}\prod_a^b |
[math]\displaystyle{ \sideset{_1^2}{_3^4}\prod_a^b }[/math] | |
{}_1^2\!\Omega_3^4 |
[math]\displaystyle{ {}_1^2\!\Omega_3^4 }[/math] | ||
Stacking | \overset{\alpha}{\omega} |
[math]\displaystyle{ \overset{\alpha}{\omega} }[/math] | |
\underset{\alpha}{\omega} |
[math]\displaystyle{ \underset{\alpha}{\omega} }[/math] | ||
\overset{\alpha}{\underset{\gamma}{\omega}} |
[math]\displaystyle{ \overset{\alpha}{\underset{\gamma}{\omega}} }[/math] | ||
\stackrel{\alpha}{\omega} |
[math]\displaystyle{ \stackrel{\alpha}{\omega} }[/math] | ||
Derivative (forced PNG) | x', y'', f', f''\! |
[math]\displaystyle{ x', y'', f', f''\! }[/math] | |
Derivative (f in italics may overlap primes in HTML) | x', y'', f', f'' |
[math]\displaystyle{ x', y'', f', f'' }[/math] | [math]\displaystyle{ x', y'', f', f''\! }[/math] |
Derivative (wrong in HTML) | x^\prime, y^{\prime\prime} |
[math]\displaystyle{ x^\prime, y^{\prime\prime} }[/math] | [math]\displaystyle{ x^\prime, y^{\prime\prime}\,\! }[/math] |
Derivative (wrong in PNG) | x\prime, y\prime\prime |
[math]\displaystyle{ x\prime, y\prime\prime }[/math] | [math]\displaystyle{ x\prime, y\prime\prime\,\! }[/math] |
Derivative dots | \dot{x}, \ddot{x} |
[math]\displaystyle{ \dot{x}, \ddot{x} }[/math] | |
Underlines, overlines, vectors | \hat a \ \bar b \ \vec c |
[math]\displaystyle{ \hat a \ \bar b \ \vec c }[/math] | |
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} |
[math]\displaystyle{ \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} }[/math] | ||
\overline{g h i} \ \underline{j k l} |
[math]\displaystyle{ \overline{g h i} \ \underline{j k l} }[/math] | ||
\not 1 \ \cancel{123} |
[math]\displaystyle{ \not 1 \ \cancel{123} }[/math] | ||
Arrows | A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C |
[math]\displaystyle{ A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C }[/math] | |
Overbraces | \overbrace{ 1+2+\cdots+100 }^{5050} |
[math]\displaystyle{ \overbrace{ 1+2+\cdots+100 }^{5050} }[/math] | |
Underbraces | \underbrace{ a+b+\cdots+z }_{26} |
[math]\displaystyle{ \underbrace{ a+b+\cdots+z }_{26} }[/math] | |
Sum | \sum_{k=1}^N k^2 |
[math]\displaystyle{ \sum_{k=1}^N k^2 }[/math] | |
Sum (force \textstyle ) |
\textstyle \sum_{k=1}^N k^2 |
[math]\displaystyle{ \textstyle \sum_{k=1}^N k^2 }[/math] | |
Product | \prod_{i=1}^N x_i |
[math]\displaystyle{ \prod_{i=1}^N x_i }[/math] | |
Product (force \textstyle ) |
\textstyle \prod_{i=1}^N x_i |
[math]\displaystyle{ \textstyle \prod_{i=1}^N x_i }[/math] | |
Coproduct | \coprod_{i=1}^N x_i |
[math]\displaystyle{ \coprod_{i=1}^N x_i }[/math] | |
Coproduct (force \textstyle ) |
\textstyle \coprod_{i=1}^N x_i |
[math]\displaystyle{ \textstyle \coprod_{i=1}^N x_i }[/math] | |
Limit | \lim_{n \to \infty}x_n |
[math]\displaystyle{ \lim_{n \to \infty}x_n }[/math] | |
Limit (force \textstyle ) |
\textstyle \lim_{n \to \infty}x_n |
[math]\displaystyle{ \textstyle \lim_{n \to \infty}x_n }[/math] | |
Integral | \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx |
[math]\displaystyle{ \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx }[/math] | |
Integral (alternate limits style) | \int_{1}^{3}\frac{e^3/x}{x^2}\, dx |
[math]\displaystyle{ \int_{1}^{3}\frac{e^3/x}{x^2}\, dx }[/math] | |
Integral (force \textstyle ) |
\textstyle \int\limits_{-N}^{N} e^x\, dx |
[math]\displaystyle{ \textstyle \int\limits_{-N}^{N} e^x\, dx }[/math] | |
Integral (force \textstyle , alternate limits style) |
\textstyle \int_{-N}^{N} e^x\, dx |
[math]\displaystyle{ \textstyle \int_{-N}^{N} e^x\, dx }[/math] | |
Double integral | \iint\limits_D \, dx\,dy |
[math]\displaystyle{ \iint\limits_D \, dx\,dy }[/math] | |
Triple integral | \iiint\limits_E \, dx\,dy\,dz |
[math]\displaystyle{ \iiint\limits_E \, dx\,dy\,dz }[/math] | |
Quadruple integral | \iiiint\limits_F \, dx\,dy\,dz\,dt |
[math]\displaystyle{ \iiiint\limits_F \, dx\,dy\,dz\,dt }[/math] | |
Line or path integral | \int_C x^3\, dx + 4y^2\, dy |
[math]\displaystyle{ \int_C x^3\, dx + 4y^2\, dy }[/math] | |
Closed line or path integral | \oint_C x^3\, dx + 4y^2\, dy |
[math]\displaystyle{ \oint_C x^3\, dx + 4y^2\, dy }[/math] | |
Intersections | \bigcap_1^n p |
[math]\displaystyle{ \bigcap_1^n p }[/math] | |
Unions | \bigcup_1^k p |
[math]\displaystyle{ \bigcup_1^k p }[/math] |
Fractions, matrices, multilines
Feature | Syntax | How it looks rendered |
---|---|---|
Fractions | \frac{1}{2}=0.5
|
[math]\displaystyle{ \frac{1}{2}=0.5 }[/math] |
Small Fractions | \tfrac{1}{2} = 0.5
|
[math]\displaystyle{ \tfrac{1}{2} = 0.5 }[/math] |
Large (normal) Fractions | \dfrac{k}{k-1} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{1}{2}}} = a
|
[math]\displaystyle{ \dfrac{k}{k-1} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{1}{2}}} = a }[/math] |
Large (nested) Fractions | \cfrac{2}{c + \cfrac{2}{d + \cfrac{1}{2}}} = a
|
[math]\displaystyle{ \cfrac{2}{c + \cfrac{2}{d + \cfrac{1}{2}}} = a }[/math] |
Binomial coefficients | \binom{n}{k}
|
[math]\displaystyle{ \binom{n}{k} }[/math] |
Small Binomial coefficients | \tbinom{n}{k}
|
[math]\displaystyle{ \tbinom{n}{k} }[/math] |
Large (normal) Binomial coefficients | \dbinom{n}{k}
|
[math]\displaystyle{ \dbinom{n}{k} }[/math] |
Matrices | \begin{matrix} x & y \\ z & v \end{matrix} |
[math]\displaystyle{ \begin{matrix} x & y \\ z & v \end{matrix} }[/math] |
\begin{vmatrix} x & y \\ z & v \end{vmatrix} |
[math]\displaystyle{ \begin{vmatrix} x & y \\ z & v \end{vmatrix} }[/math] | |
\begin{Vmatrix} x & y \\ z & v \end{Vmatrix} |
[math]\displaystyle{ \begin{Vmatrix} x & y \\ z & v \end{Vmatrix} }[/math] | |
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} |
[math]\displaystyle{ \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix} }[/math] | |
\begin{Bmatrix} x & y \\ z & v \end{Bmatrix} |
[math]\displaystyle{ \begin{Bmatrix} x & y \\ z & v \end{Bmatrix} }[/math] | |
\begin{pmatrix} x & y \\ z & v \end{pmatrix} |
[math]\displaystyle{ \begin{pmatrix} x & y \\ z & v \end{pmatrix} }[/math] | |
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) |
[math]\displaystyle{ \bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) }[/math] | |
Case distinctions | f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} |
[math]\displaystyle{ f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} }[/math] |
Multiline equations | \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} |
[math]\displaystyle{ \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} }[/math] |
\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} |
[math]\displaystyle{ \begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} }[/math] | |
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed) | \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
[math]\displaystyle{ \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} }[/math] |
Multiline equations (more) | \begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
[math]\displaystyle{ \begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} }[/math] |
Breaking up a long expression so that it wraps when necessary. | <math>f(x) = \sum_{n=0}^\infty a_n x^n </math> <math>= a_0+a_1x+a_2x^2+\cdots</math> |
[math]\displaystyle{ f(x) = \sum_{n=0}^\infty a_n x^n }[/math][math]\displaystyle{ = a_0 +a_1x+a_2x^2+\cdots }[/math] |
Simultaneous equations | \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} |
[math]\displaystyle{ \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} }[/math] |
Arrays | \begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array} |
[math]\displaystyle{ \begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array} }[/math] |
Parenthesizing big expressions, brackets, bars
Feature | Syntax | How it looks rendered |
---|---|---|
Bad | ( \frac{1}{2} )
|
[math]\displaystyle{ ( \frac{1}{2} ) }[/math] |
Good | \left ( \frac{1}{2} \right )
|
[math]\displaystyle{ \left ( \frac{1}{2} \right ) }[/math] |
You can use various delimiters with \left and \right:
Feature | Syntax | How it looks rendered |
---|---|---|
Parentheses | \left ( \frac{a}{b} \right )
|
[math]\displaystyle{ \left ( \frac{a}{b} \right ) }[/math] |
Brackets | \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
|
[math]\displaystyle{ \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack }[/math] |
Braces | \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
|
[math]\displaystyle{ \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace }[/math] |
Angle brackets | \left \langle \frac{a}{b} \right \rangle
|
[math]\displaystyle{ \left \langle \frac{a}{b} \right \rangle }[/math] |
Bars and double bars | \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|
|
[math]\displaystyle{ \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| }[/math] |
Floor and ceiling functions: | \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil
|
[math]\displaystyle{ \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil }[/math] |
Slashes and backslashes | \left / \frac{a}{b} \right \backslash
|
[math]\displaystyle{ \left / \frac{a}{b} \right \backslash }[/math] |
Up, down and up-down arrows | \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow
|
[math]\displaystyle{ \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow }[/math] |
Delimiters can be mixed, as long as \left and \right match |
\left [ 0,1 \right )</code> <br/> <code>\left \langle \psi \right |
|
[math]\displaystyle{ \left [ 0,1 \right ) }[/math] [math]\displaystyle{ \left \langle \psi \right | }[/math] |
Use \left. and \right. if you don't want a delimiter to appear: |
\left . \frac{A}{B} \right \} \to X
|
[math]\displaystyle{ \left . \frac{A}{B} \right \} \to X }[/math] |
Size of the delimiters | \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]/ |
[math]\displaystyle{ \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big] }[/math] |
\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle
|
[math]\displaystyle{ \big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle }[/math] | |
\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|
|
[math]\displaystyle{ \big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big| }[/math] | |
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil
|
[math]\displaystyle{ \big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil }[/math] | |
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow
|
[math]\displaystyle{ \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow }[/math] | |
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow
|
[math]\displaystyle{ \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow }[/math] | |
\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash
|
[math]\displaystyle{ \big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash }[/math] |
Alphabets and typefaces
Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.
Greek alphabet | |
---|---|
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta
|
[math]\displaystyle{ \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\! }[/math] |
\Eta \Theta \Iota \Kappa \Lambda \Mu
|
[math]\displaystyle{ \Eta \Theta \Iota \Kappa \Lambda \Mu \,\! }[/math] |
\Nu \Xi \Pi \Rho \Sigma \Tau
|
[math]\displaystyle{ \Nu \Xi \Pi \Rho \Sigma \Tau\,\! }[/math] |
\Upsilon \Phi \Chi \Psi \Omega
|
[math]\displaystyle{ \Upsilon \Phi \Chi \Psi \Omega \,\! }[/math] |
\alpha \beta \gamma \delta \epsilon \zeta
|
[math]\displaystyle{ \alpha \beta \gamma \delta \epsilon \zeta \,\! }[/math] |
\eta \theta \iota \kappa \lambda \mu
|
[math]\displaystyle{ \eta \theta \iota \kappa \lambda \mu \,\! }[/math] |
\nu \xi \pi \rho \sigma \tau
|
[math]\displaystyle{ \nu \xi \pi \rho \sigma \tau \,\! }[/math] |
\upsilon \phi \chi \psi \omega
|
[math]\displaystyle{ \upsilon \phi \chi \psi \omega \,\! }[/math] |
\varepsilon \digamma \vartheta \varkappa
|
[math]\displaystyle{ \varepsilon \digamma \vartheta \varkappa \,\! }[/math] |
\varpi \varrho \varsigma \varphi
|
[math]\displaystyle{ \varpi \varrho \varsigma \varphi\,\! }[/math] |
Blackboard Bold/Scripts | |
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}
|
[math]\displaystyle{ \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\! }[/math] |
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}
|
[math]\displaystyle{ \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\! }[/math] |
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}
|
[math]\displaystyle{ \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\! }[/math] |
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}
|
[math]\displaystyle{ \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\! }[/math] |
\C \N \Q \R \Z
|
[math]\displaystyle{ \C \N \Q \R \Z }[/math] |
boldface (vectors) | |
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}
|
[math]\displaystyle{ \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\! }[/math] |
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}
|
[math]\displaystyle{ \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\! }[/math] |
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}
|
[math]\displaystyle{ \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\! }[/math] |
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}
|
[math]\displaystyle{ \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\! }[/math] |
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}
|
[math]\displaystyle{ \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\! }[/math] |
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}
|
[math]\displaystyle{ \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\! }[/math] |
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}
|
[math]\displaystyle{ \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\! }[/math] |
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}
|
[math]\displaystyle{ \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\! }[/math] |
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}
|
[math]\displaystyle{ \mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\! }[/math] |
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}
|
[math]\displaystyle{ \mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\! }[/math] |
Boldface (greek) | |
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}
|
[math]\displaystyle{ \boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\! }[/math] |
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}
|
[math]\displaystyle{ \boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\! }[/math] |
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}
|
[math]\displaystyle{ \boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\! }[/math] |
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}
|
[math]\displaystyle{ \boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\! }[/math] |
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}
|
[math]\displaystyle{ \boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\! }[/math] |
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}
|
[math]\displaystyle{ \boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\! }[/math] |
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}
|
[math]\displaystyle{ \boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\! }[/math] |
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}
|
[math]\displaystyle{ \boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\! }[/math] |
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}
|
[math]\displaystyle{ \boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\! }[/math] |
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}
|
[math]\displaystyle{ \boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\! }[/math] |
Italics | |
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}
|
[math]\displaystyle{ \mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\! }[/math] |
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}
|
[math]\displaystyle{ \mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\! }[/math] |
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}
|
[math]\displaystyle{ \mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\! }[/math] |
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}
|
[math]\displaystyle{ \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\! }[/math] |
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}
|
[math]\displaystyle{ \mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\! }[/math] |
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}
|
[math]\displaystyle{ \mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\! }[/math] |
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}
|
[math]\displaystyle{ \mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\! }[/math] |
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}
|
[math]\displaystyle{ \mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\! }[/math] |
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}
|
[math]\displaystyle{ \mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\! }[/math] |
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}
|
[math]\displaystyle{ \mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\! }[/math] |
Roman typeface | |
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}
|
[math]\displaystyle{ \mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\! }[/math] |
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}
|
[math]\displaystyle{ \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\! }[/math] |
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}
|
[math]\displaystyle{ \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\! }[/math] |
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}
|
[math]\displaystyle{ \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\! }[/math] |
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}
|
[math]\displaystyle{ \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\! }[/math] |
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}
|
[math]\displaystyle{ \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\! }[/math] |
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}
|
[math]\displaystyle{ \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\! }[/math] |
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}
|
[math]\displaystyle{ \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\! }[/math] |
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}
|
[math]\displaystyle{ \mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\! }[/math] |
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}
|
[math]\displaystyle{ \mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\! }[/math] |
Fraktur typeface | |
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}
|
[math]\displaystyle{ \mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\! }[/math] |
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}
|
[math]\displaystyle{ \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\! }[/math] |
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}
|
[math]\displaystyle{ \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\! }[/math] |
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}
|
[math]\displaystyle{ \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\! }[/math] |
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}
|
[math]\displaystyle{ \mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\! }[/math] |
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}
|
[math]\displaystyle{ \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\! }[/math] |
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}
|
[math]\displaystyle{ \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\! }[/math] |
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}
|
[math]\displaystyle{ \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\! }[/math] |
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}
|
[math]\displaystyle{ \mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\! }[/math] |
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}
|
[math]\displaystyle{ \mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\! }[/math] |
Calligraphy/Script | |
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}
|
[math]\displaystyle{ \mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\! }[/math] |
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}
|
[math]\displaystyle{ \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\! }[/math] |
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}
|
[math]\displaystyle{ \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\! }[/math] |
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}
|
[math]\displaystyle{ \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\! }[/math] |
Hebrew | |
\aleph \beth \gimel \daleth
|
[math]\displaystyle{ \aleph \beth \gimel \daleth\,\! }[/math] |
Feature | Syntax | How it looks rendered | |
---|---|---|---|
non-italicised characters | \mbox{abc}
|
[math]\displaystyle{ \mbox{abc} }[/math] | [math]\displaystyle{ \mbox{abc} \,\! }[/math] |
mixed italics (bad) | \mbox{if} n \mbox{is even}
|
[math]\displaystyle{ \mbox{if} n \mbox{is even} }[/math] | [math]\displaystyle{ \mbox{if} n \mbox{is even} \,\! }[/math] |
mixed italics (good) | \mbox{if }n\mbox{ is even}
|
[math]\displaystyle{ \mbox{if }n\mbox{ is even} }[/math] | [math]\displaystyle{ \mbox{if }n\mbox{ is even} \,\! }[/math] |
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) | \mbox{if}~n\ \mbox{is even}
|
[math]\displaystyle{ \mbox{if}~n\ \mbox{is even} }[/math] | [math]\displaystyle{ \mbox{if}~n\ \mbox{is even} \,\! }[/math] |
Color
Equations can use color:
{\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}
- [math]\displaystyle{ {\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1} }[/math]
x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
- [math]\displaystyle{ x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a} }[/math]
It is also possible to change the background color, as in the following example:
Background | Wikicode | Rendering (in PNG) |
---|---|---|
White | e^{i \pi} + 1 = 0
|
[math]\displaystyle{ e^{i \pi} + 1 = 0\,\! }[/math] |
\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0
|
[math]\displaystyle{ \definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0\,\! }[/math] | |
Orange | e^{i \pi} + 1 = 0
|
[math]\displaystyle{ e^{i \pi} + 1 = 0\,\! }[/math] |
\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0
|
[math]\displaystyle{ \definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0\,\! }[/math] |
See here for all named colors supported by LaTeX.
Note that color should not be used as the only way to identify something, because it will become meaningless on black-and-white media or for color-blind people.
Formatting issues
Spacing
Note that TeX handles most spacing automatically, but you may sometimes want manual control.
Feature | Syntax | How it looks rendered |
---|---|---|
double quad space | a \qquad b
|
[math]\displaystyle{ a \qquad b }[/math] |
quad space | a \quad b
|
[math]\displaystyle{ a \quad b }[/math] |
text space | a\ b
|
[math]\displaystyle{ a\ b }[/math] |
text space without PNG conversion | a \mbox{ } b
|
[math]\displaystyle{ a \mbox{ } b }[/math] |
large space | a\;b
|
[math]\displaystyle{ a\;b }[/math] |
medium space | a\>b
|
[not supported] |
small space | a\,b
|
[math]\displaystyle{ a\,b }[/math] |
no space | ab
|
[math]\displaystyle{ ab\, }[/math] |
small negative space | a\!b
|
[math]\displaystyle{ a\!b }[/math] |
Automatic spacing may be broken in very long expressions (because they produce an overfull hbox in TeX):
<math>0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots</math>
- [math]\displaystyle{ 0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots }[/math]
This can be remedied by putting a pair of braces { } around the whole expression:
<math>{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}</math>
- [math]\displaystyle{ {0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots} }[/math]
Alignment with normal text flow
Due to the default css
img.tex { vertical-align: middle; }
an inline expression like [math]\displaystyle{ \int_{-N}^{N} e^x\, dx }[/math] should look good.
If you need to align it otherwise, use <math style="vertical-align:-100%;">...</math>
and play with the vertical-align
argument until you get it right; however, how it looks may depend on the browser and the browser settings.
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
Forced PNG rendering
To force the formula to render as PNG, add \,
(small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in preferences).
You can also use \,\!
(small space and negative space, which cancel out) anywhere inside the math tags. This does force PNG even in "HTML if possible" mode, unlike \,
.
This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).
For instance:
Syntax | How it looks rendered |
---|---|
a^{c+2}
|
[math]\displaystyle{ a^{\,\!c+2} }[/math] |
a^{c+2} \,
|
[math]\displaystyle{ a^{c+2} \, }[/math] |
a^{\,\!c+2}
|
[math]\displaystyle{ a^{\,\!c+2} }[/math] |
a^{b^{c+2}}
|
[math]\displaystyle{ a^{b^{c+2}} }[/math] (WRONG with option "HTML if possible or else PNG"!) |
a^{b^{c+2}} \,
|
[math]\displaystyle{ a^{b^{c+2}} \, }[/math] (WRONG with option "HTML if possible or else PNG"!) |
a^{b^{c+2}}\approx 5
|
[math]\displaystyle{ a^{b^{c+2}}\approx 5 }[/math] (due to "[math]\displaystyle{ \approx }[/math]" correctly displayed, no code "\,\!" needed) |
a^{b^{\,\!c+2}}
|
[math]\displaystyle{ a^{b^{\,\!c+2}} }[/math] |
\int_{-N}^{N} e^x\, dx
|
[math]\displaystyle{ \int_{-N}^{N} e^x\, dx }[/math] |
This has been tested with most of the formulae on this page, and seems to work perfectly.
You might want to include a comment in the HTML so people don't "correct" the formula by removing it:
- <!-- The \,\! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
Examples
Quadratic Polynomial
[math]\displaystyle{ ax^2 + bx + c = 0 }[/math]
<math>ax^2 + bx + c = 0</math>
Quadratic Polynomial (Force PNG Rendering)
[math]\displaystyle{ ax^2 + bx + c = 0\,\! }[/math]
<math>ax^2 + bx + c = 0\,\!</math>
Quadratic Formula
[math]\displaystyle{ x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} }[/math]
<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
Tall Parentheses and Fractions
[math]\displaystyle{ 2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right) }[/math]
<math>2 = \left(
\frac{\left(3-x\right) \times 2}{3-x}
\right)</math>
[math]\displaystyle{ S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2} }[/math]
<math>S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}</math>
Integrals
[math]\displaystyle{ \int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy }[/math]
<math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds
= \int_a^x f(y)(x-y)\,dy</math>
Summation
[math]\displaystyle{ \sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)} }[/math]
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
{3^m\left(m\,3^n+n\,3^m\right)}</math>
Differential Equation
[math]\displaystyle{ u'' + p(x)u' + q(x)u=f(x),\quad x\gt a }[/math]
<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>
Complex numbers
[math]\displaystyle{ |\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z) }[/math]
<math>|\bar{z}| = |z|,
|(\bar{z})^n| = |z|^n,
\arg(z^n) = n \arg(z)</math>
Limits
[math]\displaystyle{ \lim_{z\rightarrow z_0} f(z)=f(z_0) }[/math]
<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>
Integral Equation
[math]\displaystyle{ \phi_n(\kappa)
= \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR }[/math]
<math>\phi_n(\kappa) =
\frac{1}{4\pi^2\kappa^2} \int_0^\infty
\frac{\sin(\kappa R)}{\kappa R}
\frac{\partial}{\partial R}
\left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>
Example
[math]\displaystyle{ \phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0} }[/math]
<math>\phi_n(\kappa) =
0.033C_n^2\kappa^{-11/3},\quad
\frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>
Continuation and cases
[math]\displaystyle{ f(x) = \begin{cases}1 & -1 \le x \lt 0 \\
\frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise}\end{cases} }[/math]
<math>
f(x) =
\begin{cases}
1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\
1 - x^2 & \mbox{otherwise}
\end{cases}
</math>
Prefixed subscript
[math]\displaystyle{ {}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}\frac{z^n}{n!} }[/math]
<math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
= \sum_{n=0}^\infty
\frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}
\frac{z^n}{n!}</math>
Fraction and small fraction
[math]\displaystyle{ \frac {a}{b} }[/math] [math]\displaystyle{ \tfrac {a}{b} }[/math] <math> \frac {a}{b}\ \tfrac {a}{b} </math>