If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

Receiver noise: Difference between revisions

From Navipedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Article Infobox2
{{Article Infobox2
|Category=Fundamentals
|Category=Fundamentals
|Authors=J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
|Level=Basic
|YearOfPublication=2011
|Title={{PAGENAME}}
|Title={{PAGENAME}}
|Authors= J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain.
|Level=Medium
|YearOfPublication=2011
|Logo=gAGE
}}
}}
The receiver code noise is a white-like error and can be smoothed using a low pass filter.
The receiver code noise is a white-like error and can be smoothed using a low pass filter.


This error affects both the code and carrier measurements, but in different magnitude:
This error affects both the code and carrier measurements, but in different magnitude:
The accuracy of pseudorange measurements is about 1% of the wavelength ("chip"), or better. This means, for instance, a noise with a maximum value of 3 m for the GPS civil C/A code and about 30 cm for the protected P codes (see table 1).However, when smoothing the code with the carrier phase, the C/A receiver noise can be reduced down to about 50 cm.
The accuracy of pseudorange measurements is about 1% of the wavelength ("chip"), or better. This means, for instance, a noise with a maximum value of 3 m for the GPS civil C1-code (i.e., C/A-code) and about 30 cm for the protected P codes (see table 1).However, when smoothing the code with the carrier phase, the C1-code noise can be reduced down to about 50 cm.





Latest revision as of 10:35, 23 February 2012


FundamentalsFundamentals
Title Receiver noise
Author(s) J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
Level Basic
Year of Publication 2011

The receiver code noise is a white-like error and can be smoothed using a low pass filter.

This error affects both the code and carrier measurements, but in different magnitude: The accuracy of pseudorange measurements is about 1% of the wavelength ("chip"), or better. This means, for instance, a noise with a maximum value of 3 m for the GPS civil C1-code (i.e., C/A-code) and about 30 cm for the protected P codes (see table 1).However, when smoothing the code with the carrier phase, the C1-code noise can be reduced down to about 50 cm.


Table 1: GPS signal structure (source: G. Seeber p. 217)

The carrier phase noise is at the level of few millimetres (about the 1% of carrier phase wavelength).

Code and carrier phase noise depends on the signal strength, which varies with the elevation angle.