If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

GNSS Broadcast Orbits: Difference between revisions

From Navipedia
Jump to navigation Jump to search
No edit summary
mNo edit summary
 
(22 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Article Infobox2
{{Article Infobox2
|Category=Fundamentals
|Category=Fundamentals
|Authors=J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
|Level=Intermediate
|YearOfPublication=2011
|Title={{PAGENAME}}
|Title={{PAGENAME}}
|Authors= J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain.
|Level=Medium
|YearOfPublication=2011
|Logo=gAGE
}}
}}
The user receiver computes the satellites coordinates from the information broadcast by the GNSS satellites in the navigation messages.
The user receiver computes the satellites coordinates from the information broadcast by the GNSS satellites in the navigation messages.


Two different approaches are followed by [[GPS]]/[[GALILEO|Galileo]] and [[GLONASS]] satellites to account for satellite orbit perturbations. Those approaches define their messages contain.


In the case of GPS or Galileo satellites, the orbits are seen as Keplerian in first approximation, and the perturbations are treated as temporal variations in the orbital elements.
Two different approaches are followed by [[GPS]]/[[Galileo General Introduction|Galileo]] and [[GLONASS General Introduction|GLONASS]] satellites to account for satellite orbit perturbations. Those approaches define their messages contain.




Indeed, an extended set of sixteen quasi-Kleperian parameters (see [[GPS and Galileo Satellite Coordinates Computation]]) is broadcast to the user in the navigation message and regularly updated. This expanded set consists of the six orbital elements <math>(a(t),e(t),i(t),</math> <math>\Omega (t),\omega (t), M(t))</math> plus three rate parameters to account for the linear changes with time <math>(\stackrel{\bullet}{\Omega},\stackrel{\bullet}{i},\Delta n)</math>, three pairs of sinusoidal corrections  <math>(C_c,C_s)</math> (i.e., <math>C_c\cos(2\phi)</math>, <math>C_s\sin(2\phi)</math>), and the reference ephemeris epoch <math>t_e</math> (see article [[GPS and Galileo Satellite Coordinates Computation]]).
In the case of GPS or Galileo satellites, the orbits are seen as Keplerian in first approximation, and the perturbations are treated as temporal variations in the orbital elements.




For [[GLONASS]] satellites, the navigation message broadcasts initial conditions of position and velocity <math>(\mathbb{\mathbf r}_0,\mathbb{\mathbf v}_0)</math> and moon and solar gravitational acceleration perturbation vector components (see [[GLONASS Satellite Coordinates Computation]]) to perform a numerical integration of the orbit.  
Indeed, an extended set of sixteen quasi-Kleperian parameters (see table (1) in [[GPS and Galileo Satellite Coordinates Computation]]) is broadcast to the user in the navigation message and regularly updated. This expanded set consists of the six orbital elements <math>\displaystyle(a(t),e(t),i(t),</math> <math>\displaystyle \Omega (t),\omega (t), M(t))</math> plus three rate parameters to account for the linear changes with time <math>(\stackrel{\bullet}{\Omega},\stackrel{\bullet}{i},\Delta n)</math>, three pairs of sinusoidal corrections  <math>\displaystyle(C_c,C_s)</math> (i.e., <math> \displaystyle C_c\cos(2\phi)</math>, <math> \displaystyle C_s\sin(2\phi)</math>), and the reference ephemeris epoch <math>t_e</math> (see article [[GPS and Galileo Satellite Coordinates Computation]]).




The integration is based on applying a 4<math>^{th}</math>-order Runge-Kutta method to the equation:
For [[GLONASS General Introduction|GLONASS]] satellites, the navigation message broadcasts initial conditions of position and velocity <math>(\mathbb{\mathbf r}_0,\mathbb{\mathbf v}_0)</math> and moon and solar gravitational acceleration perturbation vector components (see table (1) in [[GLONASS Satellite Coordinates Computation]]) to perform a numerical integration of the orbit. The integration is based on applying a 4<math>^{th}</math>-order Runge-Kutta method to the equation:


:: <math>
:: <math>
Line 28: Line 25:




where <math>V</math> is the potential defined by  
:where <math>V</math> is the potential defined by  


::<math>\begin{array}{ll}
::<math>\begin{array}{ll}
Line 39: Line 36:
  \phi)}}\right ]
  \phi)}}\right ]
\end{array}
\end{array}
\qquad \mbox{(2)}
</math>  
</math>  




presented in [[Perturbed Motion]] and (<math>\mathbb{\mathbf k}_{sun\_moon}</math>) are the moon-solar accelerations expressed in an inertial coordinate system (see article [[GPS and Galileo Satellite Coordinates Computation]]).
presented in [[Perturbed Motion]] and (<math>\mathbb{\mathbf k}_{sun\_moon}</math>) are the moon-solar accelerations expressed in an inertial coordinate system (see article [[GLONASS Satellite Coordinates Computation]]).




''Note'': In [[GLONASS | GLONASS Satellite Coordinates Computation]], the differential equations system:
''Note'': In the differential equations system from [[GLONASS Satellite Coordinates Computation]]:
::<math>
::<math>
\left\{
\left\{
Line 53: Line 51:
\frac{dz_a}{dt}=v_{z_a}(t)\\
\frac{dz_a}{dt}=v_{z_a}(t)\\
\frac{dv_{x_a}}{dt}=-\bar{\mu} \bar{x}_a +\frac{3}{2}C_{20}\bar{\mu} \bar{x}_a \rho^2(1-5 \bar{z}_a^2)+ Jx_am+Jx_as\\
\frac{dv_{x_a}}{dt}=-\bar{\mu} \bar{x}_a +\frac{3}{2}C_{20}\bar{\mu} \bar{x}_a \rho^2(1-5 \bar{z}_a^2)+ Jx_am+Jx_as\\
\frac{dv_{y_a}}{dt}=-\bar{\mu} \bar{y}_a +\frac{3}{2}C_{20}\bar{\mu} \bar{y}_a \rho^2(1-5 \bar{z}_a^2)+ Jx_am+Jx_as\\
\frac{dv_{y_a}}{dt}=-\bar{\mu} \bar{y}_a +\frac{3}{2}C_{20}\bar{\mu} \bar{y}_a \rho^2(1-5 \bar{z}_a^2)+ Jy_am+Jy_as\\
\frac{dv_{z_a}}{dt}=-\bar{\mu} \bar{z}_a +\frac{3}{2}C_{20}\bar{\mu} \bar{z}_a \rho^2(3-5 \bar{z}_a^2)+ Jx_am+Jx_as\\
\frac{dv_{z_a}}{dt}=-\bar{\mu} \bar{z}_a +\frac{3}{2}C_{20}\bar{\mu} \bar{z}_a \rho^2(3-5 \bar{z}_a^2)+ Jz_am+Jz_as\\
\end{array}
\end{array}
\qquad \mbox{(3)}
\right .
\right .
</math>
</math>




:the term <math>C_{20}=-J_2=+\sqrt{5}\bar{C}_{20}</math> is used instead of <math>J_2</math> to keep the same expressions as in [[GLONASS]].
:the term <math>C_{20}=-J_2=+\sqrt{5}\bar{C}_{20}</math> is used instead of <math>J_2</math> to keep the same expressions as in GLONASS-ICD.




'''Comment:'''
'''Comment:'''
At any epoch the state of motion of the satellite is given by six parameters:
At any epoch the state of motion of the satellite is given by six parameters: The position and velocity vector components <math>\displaystyle (\mathbb{\mathbf r},\mathbb{\mathbf v})</math>, or the six Keplerian elements <math>\displaystyle (a,e,i,\Omega, \omega,V)</math>; therefore, a ''point-to-point'' transformation can be done between them. The orbit elements are the natural representation of the orbit, because (in absence of perturbations) the motion along the orbit is described by a single parameter <math>\displaystyle(V(t))</math>. In presence of perturbing forces, time-varying Keplerian elements defining an ellipse tangent to the orbit at any epoch can be considered, i.e, an osculating orbit <ref group="footnotes"> From the Latin verb ''osculor'' (to kiss).</ref>.
The position and velocity vector components <math>(\mathbb{\mathbf r},\mathbb{\mathbf v})</math>, or the six Keplerian elements <math>(a,e,i,\Omega, \omega,V)</math>; therefore, a ''point-to-point'' transformation can be done between them. The orbit elements are the natural representation of the orbit, because (in absence of perturbations) the motion along the orbit is described by a single parameter <math>(V(t))</math>. In presence of perturbing forces, time-varying Keplerian elements defining an ellipse tangent to the orbit at any epoch can be considered, i.e, an osculating orbit <references group="footnotes"> From the Latin verb ''osculor'' (to kiss).</ref>.




==Notes==
==Notes==
<references group="footnotes"/>
<references group="footnotes"/>
[[Category:Fundamentals]]
[[Category:GNSS Time Reference, Coordinate Frames and Orbits]]

Latest revision as of 16:45, 20 July 2018


FundamentalsFundamentals
Title GNSS Broadcast Orbits
Author(s) J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
Level Intermediate
Year of Publication 2011

The user receiver computes the satellites coordinates from the information broadcast by the GNSS satellites in the navigation messages.


Two different approaches are followed by GPS/Galileo and GLONASS satellites to account for satellite orbit perturbations. Those approaches define their messages contain.


In the case of GPS or Galileo satellites, the orbits are seen as Keplerian in first approximation, and the perturbations are treated as temporal variations in the orbital elements.


Indeed, an extended set of sixteen quasi-Kleperian parameters (see table (1) in GPS and Galileo Satellite Coordinates Computation) is broadcast to the user in the navigation message and regularly updated. This expanded set consists of the six orbital elements [math]\displaystyle{ \displaystyle(a(t),e(t),i(t), }[/math] [math]\displaystyle{ \displaystyle \Omega (t),\omega (t), M(t)) }[/math] plus three rate parameters to account for the linear changes with time [math]\displaystyle{ (\stackrel{\bullet}{\Omega},\stackrel{\bullet}{i},\Delta n) }[/math], three pairs of sinusoidal corrections [math]\displaystyle{ \displaystyle(C_c,C_s) }[/math] (i.e., [math]\displaystyle{ \displaystyle C_c\cos(2\phi) }[/math], [math]\displaystyle{ \displaystyle C_s\sin(2\phi) }[/math]), and the reference ephemeris epoch [math]\displaystyle{ t_e }[/math] (see article GPS and Galileo Satellite Coordinates Computation).


For GLONASS satellites, the navigation message broadcasts initial conditions of position and velocity [math]\displaystyle{ (\mathbb{\mathbf r}_0,\mathbb{\mathbf v}_0) }[/math] and moon and solar gravitational acceleration perturbation vector components (see table (1) in GLONASS Satellite Coordinates Computation) to perform a numerical integration of the orbit. The integration is based on applying a 4[math]\displaystyle{ ^{th} }[/math]-order Runge-Kutta method to the equation:

[math]\displaystyle{ \mathbb{\mathbf {\ddot r}}=\nabla V+\mathbb{\mathbf k}_{sun\_moon} \qquad \mbox{(1)} }[/math]


where [math]\displaystyle{ V }[/math] is the potential defined by
[math]\displaystyle{ \begin{array}{ll} V= & \displaystyle \frac{\mu}{r}\left[ 1- \displaystyle \sum_{n=2}^{\infty}{\left(\frac{a_e}{r}\right)^n J_n\; P_n(\sin \phi)} \right .\\ & + \left. \displaystyle \sum_{n=2}^{\infty}{\displaystyle \sum_{m=1}^{\infty}{\left(\frac{a_e}{r}\right)^n \left[ C_{nm} \cos m\lambda + S_{nm} \sin m\lambda \right ] P_{nm}(\sin \phi)}}\right ] \end{array} \qquad \mbox{(2)} }[/math]


presented in Perturbed Motion and ([math]\displaystyle{ \mathbb{\mathbf k}_{sun\_moon} }[/math]) are the moon-solar accelerations expressed in an inertial coordinate system (see article GLONASS Satellite Coordinates Computation).


Note: In the differential equations system from GLONASS Satellite Coordinates Computation:

[math]\displaystyle{ \left\{ \begin{array}{l} \frac{dx_a}{dt}=v_{x_a}(t)\\ \frac{dy_a}{dt}=v_{y_a}(t)\\ \frac{dz_a}{dt}=v_{z_a}(t)\\ \frac{dv_{x_a}}{dt}=-\bar{\mu} \bar{x}_a +\frac{3}{2}C_{20}\bar{\mu} \bar{x}_a \rho^2(1-5 \bar{z}_a^2)+ Jx_am+Jx_as\\ \frac{dv_{y_a}}{dt}=-\bar{\mu} \bar{y}_a +\frac{3}{2}C_{20}\bar{\mu} \bar{y}_a \rho^2(1-5 \bar{z}_a^2)+ Jy_am+Jy_as\\ \frac{dv_{z_a}}{dt}=-\bar{\mu} \bar{z}_a +\frac{3}{2}C_{20}\bar{\mu} \bar{z}_a \rho^2(3-5 \bar{z}_a^2)+ Jz_am+Jz_as\\ \end{array} \qquad \mbox{(3)} \right . }[/math]


the term [math]\displaystyle{ C_{20}=-J_2=+\sqrt{5}\bar{C}_{20} }[/math] is used instead of [math]\displaystyle{ J_2 }[/math] to keep the same expressions as in GLONASS-ICD.


Comment: At any epoch the state of motion of the satellite is given by six parameters: The position and velocity vector components [math]\displaystyle{ \displaystyle (\mathbb{\mathbf r},\mathbb{\mathbf v}) }[/math], or the six Keplerian elements [math]\displaystyle{ \displaystyle (a,e,i,\Omega, \omega,V) }[/math]; therefore, a point-to-point transformation can be done between them. The orbit elements are the natural representation of the orbit, because (in absence of perturbations) the motion along the orbit is described by a single parameter [math]\displaystyle{ \displaystyle(V(t)) }[/math]. In presence of perturbing forces, time-varying Keplerian elements defining an ellipse tangent to the orbit at any epoch can be considered, i.e, an osculating orbit [footnotes 1].


Notes

  1. ^ From the Latin verb osculor (to kiss).