If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor
Parameters adjustment: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 20: | Line 20: | ||
Due to the error term <math>{\boldsymbol \varepsilon}</math>, in general <math>{\mathbf Y}={\mathbf G}\,{\mathbf X}</math> defines an incompatible system (i.e., there is not an "exact" solution fulfilling the system). In this context, the parameters' solution can be taken as the vector <math>{\mathbf | Due to the error term <math>{\boldsymbol \varepsilon}</math>, in general <math>{\mathbf Y}={\mathbf G}\,{\mathbf X}</math> defines an incompatible system (i.e., there is not an "exact" solution fulfilling the system). In this context, the parameters' solution can be taken as the vector <math>\hat{\mathbf X}</math> that minimises the discrepancy in the equations system. That is, the vector <math>\hat{\mathbf X}</math> providing the "best fit" of <math>{\mathbf Y} \simeq {\mathbf G}\,\hat{\mathbf X}</math> in a given sense. | ||
Line 27: | Line 27: | ||
:<math> | :<math> | ||
\begin{array}{l} | \begin{array}{l} | ||
min \|{\mathbf Y}-{\mathbf | min \|{\mathbf Y}-\hat{\mathbf Y}\|^2=min \left[ \sum_{i=1}^n{\left ( y_i-\hat{y}_i \right )^2 }\right ] \qquad where \qquad \hat{\mathbf Y}={\mathbf G}\,\hat{\mathbf X} | ||
\qquad \mbox{(3)} \end{array} | \qquad \mbox{(3)} \end{array} | ||
</math> | </math> | ||
The discrepancy vector between the measurements <math>{\mathbf Y}</math> and the fitted model <math>{\mathbf | The discrepancy vector between the measurements <math>{\mathbf Y}</math> and the fitted model <math>\hat{\mathbf Y }={\mathbf G}\,\hat{\mathbf X}</math> is usually called the'' residual vector:'' | ||
:<math> | :<math> | ||
{\mathbf r}={\mathbf Y}-{\mathbf | {\mathbf r}={\mathbf Y}-\hat{\mathbf Y}={\mathbf Y}-{\mathbf G}\,\hat{\mathbf X } | ||
\qquad \mbox{(4)} </math> | \qquad \mbox{(4)} </math> | ||
Thence, the Least-Squares estimator solution defined by equation (3), gives the vector <math>{\mathbf | Thence, the Least-Squares estimator solution defined by equation (3), gives the vector <math>\hat{\mathbf X}</math> that minimises <ref group="footnotes">The equation (3), where a quadratic sum is minimised, could be interpreted in physical terms as minimising the energy of the error fit. Thence the estimate <math>\hat{\mathbf X}</math> can be seen as an equilibrium solution.</ref> the residuals quadratic norm <math>||{\mathbf r}||^2</math>. | ||
Line 58: | Line 58: | ||
where <math>{\mathbf S}</math> is a symmetrical, idempotent Projection matrix | where <math>{\mathbf S}</math> is a symmetrical, idempotent Projection matrix | ||
:<math>{\mathbf S}={\mathbf I}-{\mathbf G}({\mathbf G}^T\,{\mathbf G})^{-1}{\mathbf G}^T\,;\;\;{\mathbf S}^T={\mathbf S}\,\;\;;\;\;{\mathbf S}^2={\mathbf S}\,;\;\; {\mathbf r}= {\mathbf S}\, {\mathbf Y} \, {\boldsymbol \perp} \,{\mathbf | :<math>{\mathbf S}={\mathbf I}-{\mathbf G}({\mathbf G}^T\,{\mathbf G})^{-1}{\mathbf G}^T\,;\;\;{\mathbf S}^T={\mathbf S}\,\;\;;\;\;{\mathbf S}^2={\mathbf S}\,;\;\; {\mathbf r}= {\mathbf S}\, {\mathbf Y} \, {\boldsymbol \perp} \,\hat{\mathbf Y} | ||
\qquad \mbox{(6)} | \qquad \mbox{(6)} | ||
</math> | </math> | ||
Line 66: | Line 66: | ||
:<math> | :<math> | ||
{\mathbf{\Delta X}}={\mathbf | {\mathbf{\Delta X}}=\hat{\mathbf X}-{\mathbf {X}}=({\mathbf G}^T\,{\mathbf G})^{-1}{\mathbf G}^T\,{\boldsymbol \varepsilon} | ||
\qquad \mbox{(7)} | \qquad \mbox{(7)} | ||
</math> | </math> |
Latest revision as of 10:22, 26 February 2019
Fundamentals | |
---|---|
Title | Parameters adjustment |
Author(s) | J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain. |
Level | Advanced |
Year of Publication | 2011 |
The equation (1) neglects the measurement noise and missmodelling
- [math]\displaystyle{ R^j=\rho^j+c(\delta t-\delta t^j)+T^j+\hat{\alpha}\, I^j+TGD^j+\mathcal{M}^j+{\boldsymbol \varepsilon}^j \qquad \mbox{(1)} }[/math]
If such errors ([math]\displaystyle{ {\boldsymbol \varepsilon} }[/math]) are explicitly written, thence the lineal model is as follows:
- [math]\displaystyle{ {\mathbf Y}={\mathbf G}\,{\mathbf X}+{\boldsymbol \varepsilon} \qquad \mbox{(2)} }[/math]
where the error term [math]\displaystyle{ {\boldsymbol \varepsilon} }[/math] is only known from some statistical properties, usually the mean [math]\displaystyle{ {\mathbf m}=E[{\boldsymbol \varepsilon}] }[/math] and covariance matrix [math]\displaystyle{ {\mathbf R}=E[{\boldsymbol \varepsilon} \, {\boldsymbol \varepsilon}^T] }[/math].
Due to the error term [math]\displaystyle{ {\boldsymbol \varepsilon} }[/math], in general [math]\displaystyle{ {\mathbf Y}={\mathbf G}\,{\mathbf X} }[/math] defines an incompatible system (i.e., there is not an "exact" solution fulfilling the system). In this context, the parameters' solution can be taken as the vector [math]\displaystyle{ \hat{\mathbf X} }[/math] that minimises the discrepancy in the equations system. That is, the vector [math]\displaystyle{ \hat{\mathbf X} }[/math] providing the "best fit" of [math]\displaystyle{ {\mathbf Y} \simeq {\mathbf G}\,\hat{\mathbf X} }[/math] in a given sense.
A common criterion used in GNSS is the Least-Squares adjustment, which is defined by the condition:
- [math]\displaystyle{ \begin{array}{l} min \|{\mathbf Y}-\hat{\mathbf Y}\|^2=min \left[ \sum_{i=1}^n{\left ( y_i-\hat{y}_i \right )^2 }\right ] \qquad where \qquad \hat{\mathbf Y}={\mathbf G}\,\hat{\mathbf X} \qquad \mbox{(3)} \end{array} }[/math]
The discrepancy vector between the measurements [math]\displaystyle{ {\mathbf Y} }[/math] and the fitted model [math]\displaystyle{ \hat{\mathbf Y }={\mathbf G}\,\hat{\mathbf X} }[/math] is usually called the residual vector:
- [math]\displaystyle{ {\mathbf r}={\mathbf Y}-\hat{\mathbf Y}={\mathbf Y}-{\mathbf G}\,\hat{\mathbf X } \qquad \mbox{(4)} }[/math]
Thence, the Least-Squares estimator solution defined by equation (3), gives the vector [math]\displaystyle{ \hat{\mathbf X} }[/math] that minimises [footnotes 1] the residuals quadratic norm [math]\displaystyle{ ||{\mathbf r}||^2 }[/math].
From basic results of linear algebra, it follows that the solution fulfilling the condition (3) is given by:
- [math]\displaystyle{ \hat{\mathbf X}=({\mathbf G}^T\,{\mathbf G})^{-1}{\mathbf G}^T\,{\mathbf Y} \qquad \mbox{(5)} }[/math]
Substituting (5) and (2) in (4) the post-fit -residual vector is:
- [math]\displaystyle{ {\mathbf r}=\left [\mathbf{I}-{\mathbf G}({\mathbf G}^T\,{\mathbf G})^{-1}{\mathbf G}^T\right]\, {\mathbf Y}= {\mathbf S}\, {\mathbf Y}={\mathbf S}\,{\boldsymbol \varepsilon} }[/math]
where [math]\displaystyle{ {\mathbf S} }[/math] is a symmetrical, idempotent Projection matrix
- [math]\displaystyle{ {\mathbf S}={\mathbf I}-{\mathbf G}({\mathbf G}^T\,{\mathbf G})^{-1}{\mathbf G}^T\,;\;\;{\mathbf S}^T={\mathbf S}\,\;\;;\;\;{\mathbf S}^2={\mathbf S}\,;\;\; {\mathbf r}= {\mathbf S}\, {\mathbf Y} \, {\boldsymbol \perp} \,\hat{\mathbf Y} \qquad \mbox{(6)} }[/math]
From (5) and (2) the estimator error can be written as:
- [math]\displaystyle{ {\mathbf{\Delta X}}=\hat{\mathbf X}-{\mathbf {X}}=({\mathbf G}^T\,{\mathbf G})^{-1}{\mathbf G}^T\,{\boldsymbol \varepsilon} \qquad \mbox{(7)} }[/math]
Assuming that the measurements minus model (i.e., prefit-residuals) have mean zero errors ([math]\displaystyle{ E[{\boldsymbol \varepsilon}]=0 }[/math]) and covariance matrix [math]\displaystyle{ {\mathbf R} }[/math], thence, the mean error, covariance matrix and Mean-Square Error (MSE) of the estimator are given by:
- [math]\displaystyle{ \begin{array}{l} \begin{array}{rl} {\mathbf m}_{_{\mathbf \Delta X}} =&E[{\mathbf \Delta X}]=({\mathbf G}^T\,{\mathbf G})^{-1}{\mathbf G}^T\,E[{\boldsymbol \varepsilon}]=0 \end{array}\\[0.3cm] \begin{array}{rl} {\mathbf P}_{_{\mathbf \Delta X}}= &E[{\mathbf \Delta X} \, {\mathbf \Delta X}^T]=({\mathbf G}^T\,{\mathbf G})^{-1}{\mathbf G}^T \,E[{\boldsymbol \varepsilon}\, {\boldsymbol \varepsilon}^T]\,{\mathbf G}({\mathbf G}^T\,{\mathbf G})^{-1}=({\mathbf G}^T\,{\mathbf G})^{-1}{\mathbf G}^T \,\,{\mathbf R}\,\,{\mathbf G}({\mathbf G}^T\,{\mathbf G})^{-1} \end{array} \\[0.3cm] \begin{array}{rl} \mbox{MSE}_{_{\mathbf \Delta X}}= &E[{\mathbf \Delta X}^T \, {\mathbf \Delta X}]= trace ({\mathbf P}_{_{\mathbf \Delta X}}) \end{array}~\\ \end{array} \qquad \mbox{(8)} }[/math]
The expression of [math]\displaystyle{ {\mathbf P} }[/math] become simpler by assuming uncorrelated values with identical variance [math]\displaystyle{ \sigma^2 }[/math]. That is, taking [math]\displaystyle{ {\mathbf R}=E[{\boldsymbol \varepsilon} \, {\boldsymbol \varepsilon}^T]=\sigma^2\,{\mathbf I} }[/math], thence:
- [math]\displaystyle{ {\mathbf P}_{_{\mathbf{\Delta X}}}=\sigma^2\,({\mathbf G}^T\,{\mathbf G})^{-1} \qquad \mbox{(9)} }[/math]
For more information, please go to the following articles:
Notes
- ^ The equation (3), where a quadratic sum is minimised, could be interpreted in physical terms as minimising the energy of the error fit. Thence the estimate [math]\displaystyle{ \hat{\mathbf X} }[/math] can be seen as an equilibrium solution.