If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

APPROVED
Vicente.Navarro approved this page 14 July 2025
14 July 2025

Pole Tide: Difference between revisions

From Navipedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 8: Line 8:
The instantaneous earth rotation axis shifts inside a square of about <math>20</math> meters in relation to a point with fixed coordinates on the earth (i.e., Chandler wobble with a period of <math>14</math> months). This entails a varying elastic response of the earth's crust. This has an effect smaller than <math>2.5</math> centimetres in vertical and <math>0.7</math> centimetres in horizontal, but must be taken into account if the observations are carried out over periods longer than two months.
The instantaneous earth rotation axis shifts inside a square of about <math>20</math> meters in relation to a point with fixed coordinates on the earth (i.e., Chandler wobble with a period of <math>14</math> months). This entails a varying elastic response of the earth's crust. This has an effect smaller than <math>2.5</math> centimetres in vertical and <math>0.7</math> centimetres in horizontal, but must be taken into account if the observations are carried out over periods longer than two months.


From the IERS Conventions [Denis et al., 2004] <ref> [Denis et al., 2004] Denis, D., McCarthy and Petit, G., 2004. IERS Conventions (2003). IERS Technical Note 32.. IERS Convention Center., Frankfurt am Main.</ref>, pages 83-84, the following expression <ref group="footnotes"> Notice the use of latitude <math>\displaystyle \varphi</math> in equations (1 and 2), instead of the co-latitude <math>\displaystyle \theta</math> used in the IERS equations.</ref>  can be derived for the displacement at a point of geographic latitude <math>\displaystyle \varphi</math> and longitude <math>\displaystyle \lambda</math>:
From the IERS Conventions [Denis et al., 2004] <ref> [Denis et al., 2004] Denis, D., McCarthy and Petit, G., 2004. IERS Conventions (2003). IERS Technical Note 32.. IERS Convention Center., Frankfurt am Main.</ref>, pages 83-84, the following expression <ref group="footnotes"> Notice the use of latitude <math>\displaystyle \varphi</math> in equations (1 and 2), instead of the co-latitude <math>\displaystyle \theta</math> used in the IERS equations.</ref>  can be derived for the displacement at a point of geocentric latitude <math>\displaystyle \varphi</math> and longitude <math>\displaystyle \lambda</math>:




Line 22: Line 22:




Taking the earth's angular rotation <math>\omega_E= 7.29\cdot 10^{-5}</math>, the earth's equatorial radius <math>R_e=6378\, km</math> and the gravitational acceleration <math>g=9.8\, m/sec^2</math>, it follows:
Taking the earth's angular rotation <math>\omega_E= 7.29\cdot 10^{-5} rad/s</math>, the earth's equatorial radius <math>R_e=6378\cdot 10^3\, m</math> and the gravitational acceleration <math>g=9.8\, m/sec^2</math>, it follows:




Line 36: Line 36:




The displacement <math>\displaystyle \delta</math> is given in the radial, longitude and latitude <math>(\hat{\mathbf r}, \hat{\boldsymbol \lambda}, \hat{\boldsymbol \varphi})</math> vectors, i.e., the Up East North (UEN) local system, and, thence, can be transformed to the TRS reference system (see [[Reference Frames in GNSS]]) applying the following latitude and longitude rotations indicated in figure 1:
The displacement <math>\displaystyle \delta</math> is given in the radial, longitude and latitude <math>(\hat{\mathbf r}, \hat{\boldsymbol \lambda}, \hat{\boldsymbol \varphi})</math> vectors (positive upwards, eastwards and northwards, respectively).
 
Thus, the displacement vector in the (x, y, z) ECEF Cartesian coordinates is given by


::<math>
::<math>
Line 66: Line 66:
::[[File:Pole_Tide_UEN2CTS.png|none|thumb|400px|'''''Figure 1:''''' Transformation from UEN <math>(\hat{\mathbf r}, \hat{\boldsymbol \lambda}, \hat{\boldsymbol \varphi})</math> to TRS <math>(x,y,x)</math> coordinates.]]
::[[File:Pole_Tide_UEN2CTS.png|none|thumb|400px|'''''Figure 1:''''' Transformation from UEN <math>(\hat{\mathbf r}, \hat{\boldsymbol \lambda}, \hat{\boldsymbol \varphi})</math> to TRS <math>(x,y,x)</math> coordinates.]]


where <math> {{\mathbf R}_3(-\lambda )\cdot {\mathbf R}_2(\varphi )}  </math> are the rotations in latitude (1) and longitude (2) indicated in figure 1 (see [[Reference Frames in GNSS]]).





Latest revision as of 07:33, 5 April 2013


FundamentalsFundamentals
Title Pole Tide
Author(s) J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
Level Intermediate
Year of Publication 2011

The instantaneous earth rotation axis shifts inside a square of about [math]\displaystyle{ 20 }[/math] meters in relation to a point with fixed coordinates on the earth (i.e., Chandler wobble with a period of [math]\displaystyle{ 14 }[/math] months). This entails a varying elastic response of the earth's crust. This has an effect smaller than [math]\displaystyle{ 2.5 }[/math] centimetres in vertical and [math]\displaystyle{ 0.7 }[/math] centimetres in horizontal, but must be taken into account if the observations are carried out over periods longer than two months.

From the IERS Conventions [Denis et al., 2004] [1], pages 83-84, the following expression [footnotes 1] can be derived for the displacement at a point of geocentric latitude [math]\displaystyle{ \displaystyle \varphi }[/math] and longitude [math]\displaystyle{ \displaystyle \lambda }[/math]:


[math]\displaystyle{ \begin{array}{ll} \delta_{\hat{\mathbf r}}=&-\frac{\omega^2_E \, R_e}{2\,g}\,h \, \sin 2\varphi \left ( m_1 \cos \lambda + m_2 \sin \lambda \right ) \,\hat {\mathbf r}\qquad \\[0.3cm] \delta_{\hat{\mathbf \lambda}}= & -\frac{\omega^2_E \, R_e}{g}\, l \, \sin \varphi \left (-m_1 \sin \lambda + m_2 \cos \lambda \right ) \, \hat{\mathbf \lambda} \qquad \\[0.3cm] \delta_{\hat{\mathbf \varphi}}= & -\frac{\omega^2_E \, R_e}{g}\, l\, \cos 2\varphi \left (\, m_1 \cos \lambda + m_2 \sin \lambda \right )\, \hat{\mathbf \varphi}\qquad \end{array} \qquad\mbox{(1)} }[/math]


where ([math]\displaystyle{ \displaystyle m_1 }[/math],[math]\displaystyle{ \displaystyle m_2 }[/math]) are the displacements (in meters) from the 1903.0 CIO, pole position, and [math]\displaystyle{ \displaystyle h= 0.6027 }[/math], [math]\displaystyle{ \displaystyle l=0.0836 }[/math] are the Love numbers.


Taking the earth's angular rotation [math]\displaystyle{ \omega_E= 7.29\cdot 10^{-5} rad/s }[/math], the earth's equatorial radius [math]\displaystyle{ R_e=6378\cdot 10^3\, m }[/math] and the gravitational acceleration [math]\displaystyle{ g=9.8\, m/sec^2 }[/math], it follows:


[math]\displaystyle{ \begin{array}{ll} \delta_{\hat{\mathbf r}}=&-32 \, \sin 2\varphi \left ( x_1 \cos \lambda + x_2 \sin \lambda \right ) \, \hat {\mathbf r}\qquad \mbox{(mm)} \\[0.3cm] \delta_{\hat{\mathbf \lambda}}= & -9 \, \sin \varphi \left (-x_1 \sin \lambda + x_2 \cos \lambda \right ) \, \hat{\mathbf \lambda} \qquad \mbox{(mm)} \\[0.3cm] \delta_{\hat{\mathbf \varphi}}= & -9 \, \cos 2\varphi \left (\, x_1 \cos \lambda + x_2 \sin \lambda \right )\, \hat{\mathbf \varphi}\qquad \mbox{(mm)} \end{array} \qquad\mbox{(2)} }[/math]


where ([math]\displaystyle{ \displaystyle x_1 }[/math],[math]\displaystyle{ \displaystyle x_2 }[/math]) are the displacements (given in seconds of arc). Pole displacements can be found at ftp://hpiers.obspm.fr/iers/eop/eop.others.


The displacement [math]\displaystyle{ \displaystyle \delta }[/math] is given in the radial, longitude and latitude [math]\displaystyle{ (\hat{\mathbf r}, \hat{\boldsymbol \lambda}, \hat{\boldsymbol \varphi}) }[/math] vectors (positive upwards, eastwards and northwards, respectively). Thus, the displacement vector in the (x, y, z) ECEF Cartesian coordinates is given by

[math]\displaystyle{ \left[ \begin{array}{c} \Delta x \\ \Delta y \\ \Delta z \end{array} \right]= \underbrace{\left( \begin{array}{ccc} \cos \lambda \cos \varphi & -\sin \lambda & -\cos \lambda \sin \varphi \\ \sin \lambda \cos \varphi & \cos \lambda & -\sin \lambda \sin \varphi \\ \sin \varphi & 0 & \cos \Phi \end{array} \right)}_{{\mathbf R}_3(-\lambda )\cdot {\mathbf R}_2(\varphi )} \left[ \begin{array}{l} \delta_{\hat{\mathbf r}}\\ \delta_{\hat{\mathbf \lambda}}\\ \delta_{\hat{\mathbf \varphi}} \end{array} \right] \qquad\mbox{(2)} }[/math]


Figure 1: Transformation from UEN [math]\displaystyle{ (\hat{\mathbf r}, \hat{\boldsymbol \lambda}, \hat{\boldsymbol \varphi}) }[/math] to TRS [math]\displaystyle{ (x,y,x) }[/math] coordinates.

where [math]\displaystyle{ {{\mathbf R}_3(-\lambda )\cdot {\mathbf R}_2(\varphi )} }[/math] are the rotations in latitude (1) and longitude (2) indicated in figure 1 (see Reference Frames in GNSS).


Notes

  1. ^ Notice the use of latitude [math]\displaystyle{ \displaystyle \varphi }[/math] in equations (1 and 2), instead of the co-latitude [math]\displaystyle{ \displaystyle \theta }[/math] used in the IERS equations.


References

  1. ^ [Denis et al., 2004] Denis, D., McCarthy and Petit, G., 2004. IERS Conventions (2003). IERS Technical Note 32.. IERS Convention Center., Frankfurt am Main.