If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor
MSAS Signal Structure: Difference between revisions
m (Text replace - "|Authors=GMV." to "|Authors=GMV") |
Rui.Pereira (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
{{Article Infobox2 | {{Article Infobox2 | ||
|Category=MSAS | |Category=MSAS | ||
|Authors=GMV | |Authors=GMV | ||
|Level=Basic | |Level=Basic | ||
|YearOfPublication=2011 | |YearOfPublication=2011 | ||
|Logo=GMV | |Logo=GMV | ||
|Title={{PAGENAME}} | |||
}} | }} | ||
The MTSAT Satellite Augmentation System ([[MSAS General Introduction|MSAS]]) is the Japanese [[SBAS General Introduction|Satellite Based Augmentation System (SBAS)]] System:<ref name="MSAS_STATUS_2007">[http://www.oosa.unvienna.org/pdf/icg/2007/icg2/presentations/04_01.pdf MSAS Current Status, Japan Civil Aviation Bureau,] [http://www.oosa.unvienna.org/oosa/SAP/gnss/icg/icg02/presentations.html Second Meeting of the International Committee on Global Navigation Satellite Systems (ICG) organized by the International Space Research Organization, Bangalore, India , 5 - 7 September 2007]</ref> a GPS Augmentation system with the goal of improving its accuracy, integrity, and availability, and that uses the Multifunctional Transport Satellites (MTSAT) owned and operated by the [http://www.mlit.go.jp Japanese Ministry of Land, Infrastructure and Transport] and the [http://www.jma.go.jp Japan Meteorological Agency (JMA).]<ref name=MTSAS_WIKI_1>[http://en.wikipedia.org/wiki/Multi-Functional_Transport_Satellite Multi-Functional Transport Satellite] in [http://en.wikipedia.org/ Wikipedia]</ref> | |||
The MTSAT Satellite Augmentation System ([[ | |||
First tests were accomplished successfully, and MSAS system for aviation use was declared operational in September 27, 2007,<ref name="MSAS_STATUS_2007_2">[http://www.navcen.uscg.gov/pdf/cgsicMeetings/47/%5B24%5Dqzzmsas.pdf QZSS / MSAS Status,] CGSIC –47th Meeting ,Fort Worth, Texas September25, 2007, Satoshi KOGURE, [http://www.jaxa.jp/index_e.html Japan Aerospace Exploration Agency,] QZSS Project Team</ref><ref name="MSAS_GPSW">[http://www.gpsworld.com/survey/perspectives-late-april-2008-7289 Eric Gakstatter, Perspectives - Late April 2008, GPSworld, April 15, 2008]</ref><ref name=MSAS_WIKI_2>[http://en.wikipedia.org/wiki/Multi-functional_Satellite_Augmentation_System Multi-functional Satellite Augmentation System] in [http://en.wikipedia.org/ Wikipedia]</ref> providing a service of horizontal guidance for En-route through Non-Precision Approach.<ref name="MSAS_STATUS_2007"/><ref name="MSAS_STATUS_2007_2"/><ref name="MSAS_STATUS_2008">[http://www.oosa.unvienna.org/pdf/icg/2008/icg3/08-1.pdf Overview of MSAS, Presentation for ICG-3, 2008]</ref> | First tests were accomplished successfully, and MSAS system for aviation use was declared operational in September 27, 2007,<ref name="MSAS_STATUS_2007_2">[http://www.navcen.uscg.gov/pdf/cgsicMeetings/47/%5B24%5Dqzzmsas.pdf QZSS / MSAS Status,] CGSIC –47th Meeting ,Fort Worth, Texas September25, 2007, Satoshi KOGURE, [http://www.jaxa.jp/index_e.html Japan Aerospace Exploration Agency,] QZSS Project Team</ref><ref name="MSAS_GPSW">[http://www.gpsworld.com/survey/perspectives-late-april-2008-7289 Eric Gakstatter, Perspectives - Late April 2008, GPSworld, April 15, 2008]</ref><ref name=MSAS_WIKI_2>[http://en.wikipedia.org/wiki/Multi-functional_Satellite_Augmentation_System Multi-functional Satellite Augmentation System] in [http://en.wikipedia.org/ Wikipedia]</ref> providing a service of horizontal guidance for En-route through Non-Precision Approach.<ref name="MSAS_STATUS_2007"/><ref name="MSAS_STATUS_2007_2"/><ref name="MSAS_STATUS_2008">[http://www.oosa.unvienna.org/pdf/icg/2008/icg3/08-1.pdf Overview of MSAS, Presentation for ICG-3, 2008]</ref> |
Revision as of 18:18, 8 November 2011
MSAS | |
---|---|
Title | MSAS Signal Structure |
Author(s) | GMV |
Level | Basic |
Year of Publication | 2011 |
The MTSAT Satellite Augmentation System (MSAS) is the Japanese Satellite Based Augmentation System (SBAS) System:[1] a GPS Augmentation system with the goal of improving its accuracy, integrity, and availability, and that uses the Multifunctional Transport Satellites (MTSAT) owned and operated by the Japanese Ministry of Land, Infrastructure and Transport and the Japan Meteorological Agency (JMA).[2]
First tests were accomplished successfully, and MSAS system for aviation use was declared operational in September 27, 2007,[3][4][5] providing a service of horizontal guidance for En-route through Non-Precision Approach.[1][3][6]
MSAS Signal Structure
Signal characteristics are compliant with ICAO SARPs:[6][7]
- Frequency ; L1 = 1575.42MHz.
- Bandwidth ; L1 ±2.2 MHz band.
- Data Rate; 500 symbols per Second, 1/2 convolutional encoded with a Forward Error Correction (FEC) code (250 effective bits per second).
- Signal strength on the earth surface >-161dBw at 5 degrees elevation.
The future lines of improvement of MSAS signals are:[6]
- Band width expansion for L1.
- L5 signal (preparation for Dual-Frequency operations).
- Compatibility & Interoperability achivement between the different SBAS and GNSS constellations.
For an introduction on the signal structure, please refer to the article The EGNOS SBAS Message Format Explained.
Notes
References
- ^ a b MSAS Current Status, Japan Civil Aviation Bureau, Second Meeting of the International Committee on Global Navigation Satellite Systems (ICG) organized by the International Space Research Organization, Bangalore, India , 5 - 7 September 2007
- ^ Multi-Functional Transport Satellite in Wikipedia
- ^ a b QZSS / MSAS Status, CGSIC –47th Meeting ,Fort Worth, Texas September25, 2007, Satoshi KOGURE, Japan Aerospace Exploration Agency, QZSS Project Team
- ^ Eric Gakstatter, Perspectives - Late April 2008, GPSworld, April 15, 2008
- ^ Multi-functional Satellite Augmentation System in Wikipedia
- ^ a b c Overview of MSAS, Presentation for ICG-3, 2008
- ^ ICAO Standards and Recommended Practices, Annex 10, Volume 1 Radio Navigation Aids, July 2006