If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor
Precise modelling terms for PPP: Difference between revisions
Jump to navigation
Jump to search
Carlos.Lopez (talk | contribs) (Created page with "{{Article Infobox2 |Category=Fundamentals |Title={{PAGENAME}} |Authors= J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain. |Level=Medium...") |
Carlos.Lopez (talk | contribs) No edit summary |
||
Line 40: | Line 40: | ||
: ''Relativistic effects'': The gravitational path range correction (3) (see [[Relativistic Path Range Effect]]), can be added among the satellite clock correction due to the orbit eccentricity (4) considered in the [[Code Based Positioning (SPP)|SPP]] (see [[Relativistic Clock Correction]]). | : ''Relativistic effects'': The gravitational path range correction (3) (see [[Geometric Range Modelling Relativistic Path Range Effect|Relativistic Path Range Effect]]), can be added among the satellite clock correction due to the orbit eccentricity (4) considered in the [[Code Based Positioning (SPP)|SPP]] (see [[Relativistic Clock Correction]]). | ||
::<math> | ::<math> | ||
Line 56: | Line 56: | ||
* '''Atmospheric effects:''' | * '''Atmospheric effects:''' | ||
:The ''ionospheric refraction'' and DCBs are removed using the ionosphere free combination of measurements (see details in [[ | :The ''ionospheric refraction'' and DCBs are removed using the ionosphere free combination of measurements (see details in [[Ionosphere-free Combination for Dual Frequency Receivers]]). | ||
Line 82: | Line 82: | ||
* '''Antenna biases and orientation:''' | * '''Antenna biases and orientation:''' | ||
: The ''satellite and receiver antenna phase centres'' can be found in the IGS ANTEX files, after the GPS week <math>1400</math> (see [[ | : The ''satellite and receiver antenna phase centres'' can be found in the IGS ANTEX files, after the GPS week <math>1400</math> (see [[Antenna Phase Centre]]). | ||
: The ''carrier phase wind-up effect'' due to the satellite motion is given by (7) (see [[Carrier Phase Wind | : The ''carrier phase wind-up effect'' due to the satellite motion is given by (7) (see [[Carrier Phase Wind-up Effect]]) | ||
::<math> | ::<math> | ||
Line 92: | Line 92: | ||
: The ''satellites under eclipse conditions'' should be removed from the computation due to the largest orbit error. The eclipse condition is given by (8) (see [[Satellite Eclipses ]]) | : The ''satellites under eclipse conditions'' should be removed from the computation due to the largest orbit error. The eclipse condition is given by (8) (see [[Geometric Range Modelling: Satellite Eclipses|Satellite Eclipses ]]) | ||
::<math> | ::<math> | ||
Line 115: | Line 115: | ||
: ''Ocean loading and Pole Tides'' are second order effects and can be neglected for PPP accuracies at the centimetre level (see comments in [[Ocean | : ''Ocean loading and Pole Tides'' are second order effects and can be neglected for PPP accuracies at the centimetre level (see comments in [[Ocean loading]] and [[Pole Tide]]). | ||
Revision as of 15:26, 25 July 2011
Fundamentals | |
---|---|
Title | Precise modelling terms for PPP |
Author(s) | J. Sanz Subirana, JM. Juan Zornoza and M. Hernandez-Pajares, University of Catalunia, Spain. |
Level | Medium |
Year of Publication | 2011 |
The Precise Point Positioning (PPP) technique allows achieving centimetre level accuracy for static positioning and decimetre level for kinematic, typically, after the best part of one hour. This high accuracy requires an accurate measurements modelling, where all model terms must be taken into account (up to the centimetre level or better).
This modelling involves the following terms, among those considered in the SPP:
- Precise satellite orbits and clocks:
- The precise orbits and clocks files (see Precise GNSS Satellite Coordinates Computation) must be used instead of the broadcast ones used in the SPP.
- The polynomial (1) can be applied to interpolate the precise orbits (see Precise GNSS Satellite Coordinates Computation)
- [math]\displaystyle{ \begin{array}{lll} P_n(x)&=& \sum_{i=1}^n{y_i \frac{\prod_{j\neq i}{(x-x_j)}}{\prod_{j\neq i}{(x_i-x_j)}}}=\\ &=& y_1 \frac{x-x_2}{(x_1-x_2)} \cdots \frac{x-x_n}{(x_1-x_n)}+\cdots\\ & &+y_i \frac{x-x_1}{(x_i-x_1)} \cdots \frac{x-x_{i-1}}{(x_i-x_{i-1})}\frac{x-x_{i+1}}{(x_i-x_{i+1})}\cdots \frac{x-x_n}{(x_i-x_n)}+\cdots\\ & & +y_n \frac{x-x_1}{(x_n-x_1)} \cdots\frac{x-x_{n-1}}{(x_n-x_{n-1})} \end{array} \qquad \mbox{(1)} :: }[/math]
- Notice that, the orbits are referred to the satellite mass centre, and thence, the Satellite Antenna Phase Centre offset must be applied to compute the [math]\displaystyle{ {\boldsymbol \Delta}_{APC} }[/math] vector offset.
- [math]\displaystyle{ {\mathbf r}_{sat_{_{APC}}}={\mathbf r}_{sat_{_{MC}}}+{\mathbf R}\cdot {\boldsymbol \Delta}_{_{APC}} \qquad \mbox{(2)} }[/math]
- The satellite clocks should not be interpolated and thence, only epochs having clocks available must be used (Precise GNSS Satellite Coordinates Computation).
- Relativistic effects: The gravitational path range correction (3) (see Relativistic Path Range Effect), can be added among the satellite clock correction due to the orbit eccentricity (4) considered in the SPP (see Relativistic Clock Correction).
- [math]\displaystyle{ \Delta \rho_{_{rel}}=\frac{2\,\mu}{c^2}ln\frac{r^{sat}+r_{rcv}+r_{rcv}^{sat}}{r^{sat}+r_{rcv}-r_{rcv}^{sat}} \qquad \mbox{(3)} }[/math]
- [math]\displaystyle{ \Delta_{rel}=- 2\, \frac{\mathbf{r} \cdot \mathbf{v}}{c^2} \qquad \mbox{(4)} }[/math]
- Atmospheric effects:
- The ionospheric refraction and DCBs are removed using the ionosphere free combination of measurements (see details in Ionosphere-free Combination for Dual Frequency Receivers).
- The tropospheric refraction can be modelled by (5) (see Tropospheric Delay )
- [math]\displaystyle{ T(E)=T_{z,dry}\cdot M_{dry}(E)+T_{z,wet}\cdot M_{wet}(E) \qquad \mbox{(5)} }[/math]
- where the mapping of Niell is used. The dry and wet tropospheric delays are given by
- [math]\displaystyle{ \begin{array}{l} T_{z,dry}= a\; e^{-b\; H}\\ T_{z,wet}= T_{z_0,wet}+\Delta T_{z,wet} \qquad \mbox{(6)} \end{array} }[/math]
- The deviation of the zenith tropospheric delay [math]\displaystyle{ \Delta T_{z,wet} }[/math] regarding to the nominal [math]\displaystyle{ T_{z_0,wet} }[/math] must be estimated in the Kalman filter, together with the coordinates, clock and carrier phase biases.
- Antenna biases and orientation:
- The satellite and receiver antenna phase centres can be found in the IGS ANTEX files, after the GPS week [math]\displaystyle{ 1400 }[/math] (see Antenna Phase Centre).
- The carrier phase wind-up effect due to the satellite motion is given by (7) (see Carrier Phase Wind-up Effect)
- [math]\displaystyle{ \Delta \phi=2N\pi+sign(\zeta)\cdot \arccos \left( \frac{\vec{D}^{\prime}\cdot\vec{D}}{\|\vec{D}^{\prime}\|\cdot\|\vec{D}\|}\right) \qquad \mbox{(7)} }[/math]
- The satellites under eclipse conditions should be removed from the computation due to the largest orbit error. The eclipse condition is given by (8) (see Satellite Eclipses )
- [math]\displaystyle{ \cos \phi = \frac{{\mathbf r}_{sat}\cdot {\mathbf r}_{sun}}{|{\mathbf r}_{sat}\cdot {\mathbf r}_{sun}|} \lt 0 \qquad \mbox{and} \qquad r_{sat} \sqrt{1-\cos^2 \phi}\, \lt a_e \qquad \mbox{(8)} }[/math]
- Earth deformation effects:
- Solid tides can be modelled by equations (9) and (10) (see Solid Tides )
- [math]\displaystyle{ \Delta {\mathbf r}= \sum_{j=2}^{3}{\frac{G\,M_j\,R_e^4}{G\,M_\oplus\,R_j^3}} \left \{h_2 \,\hat{\mathbf r} \left ( \frac{3}{2} (\hat{\mathbf R}_j \cdot \hat{\mathbf r})^2 -\frac{1}{2}\right) + 3\,l_2\,(\hat{\mathbf R}_j \cdot \hat{\mathbf r}) \left [\hat{\mathbf R}_j-(\hat{\mathbf R}_j \cdot \hat{\mathbf r})\,\hat{\mathbf r} \right ]\right \} \qquad \mbox{(9)} }[/math]
- [math]\displaystyle{ \Delta {\mathbf r}= \sum_{j=2}^{3}{\frac{G\,M_j\,R_e^5}{G\,M_\oplus\,R_j^4}} \left \{h_3 \,\hat{\mathbf r} \left ( \frac{5}{2} (\hat{\mathbf R}_j \cdot \hat{\mathbf r})^3 -\frac{3}{2} (\hat{\mathbf R}_j \cdot \hat{\mathbf r})\right) + l_3\,\left (\frac{15}{2} (\hat{\mathbf R}_j \cdot \hat{\mathbf r})^2 - \frac{3}{2} \right ) \left [\hat{\mathbf R}_j-(\hat{\mathbf R}_j \cdot \hat{\mathbf r})\,\hat{\mathbf r} \right ]\right \} \qquad \mbox{(10)} }[/math]
- Ocean loading and Pole Tides are second order effects and can be neglected for PPP accuracies at the centimetre level (see comments in Ocean loading and Pole Tide).
Notes