If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor
EGNOS User Segment: Difference between revisions
Jon.Caudepon (talk | contribs) |
mNo edit summary |
||
Line 7: | Line 7: | ||
|Logo=GMV | |Logo=GMV | ||
}} | }} | ||
The EGNOS User segment is made of EGNOS receivers that enable their users to accurately compute their positions. | The EGNOS User segment is made of EGNOS receivers that enable their users to accurately compute their positions. | ||
Line 13: | Line 12: | ||
==EGNOS User Applications== | ==EGNOS User Applications== | ||
[[ SISNET | SISNeT]] is a technology that combines the powerful capabilities of satellite navigation and the Internet. The highly accurate navigation information that comes from the EGNOS (European Geostationary Navigation Overlay Service) Signal-In-Space (SIS) is now available over the Internet and in real time via SISNeT.<ref name=" ESA Portal on SISNeT Project">[http://www.egnos-pro.esa.int/sisnet/index.html ESA Portal on SISNeT Project ]</ref> | [[ SISNET | SISNeT]] is a technology that combines the powerful capabilities of satellite navigation and the Internet. The highly accurate navigation information that comes from the EGNOS (European Geostationary Navigation Overlay Service) Signal-In-Space (SIS) is now available over the Internet and in real time via SISNeT.<ref name=" ESA Portal on SISNeT Project">[http://www.egnos-pro.esa.int/sisnet/index.html ESA Portal on SISNeT Project ]</ref> | ||
==EGNOS Receivers== | ==EGNOS Receivers== | ||
[[EGNOS Receivers | EGNOS Receivers]] | [[EGNOS Receivers | EGNOS Receivers]] | ||
==Errors Affecting User Positioning== | ==Errors Affecting User Positioning== | ||
A GNSS receiver processes the individual satellite range measurements and combines them to compute an estimate of the user position (latitude, longitude, altitude, and user | A GNSS receiver processes the individual satellite range measurements and combines them to compute an estimate of the user position (latitude, longitude, altitude, and user | ||
clock bias) in a given geographical coordinate reference frame. | clock bias) in a given geographical coordinate reference frame. | ||
The estimation of the satellite-to-user range is based on the measurement of the propagation time of the signal and a number of error sources affect the accuracy of these measurements:<ref name=" EGNOS SoL SDD">[http://www.essp-sas.eu/service_definition_documents | The estimation of the satellite-to-user range is based on the measurement of the propagation time of the signal and a number of error sources affect the accuracy of these measurements:<ref name=" EGNOS SoL SDD">[http://www.essp-sas.eu/service_definition_documents EGNOS Safety of Life (SoL) Service Definition Document (SDD) ]</ref> | ||
* Satellite clocks: any error in the synchronisation of the different satellite clocks will have a direct effect on the range measurement accuracy. These errors are similar for all users able to view a given satellite. | * Satellite clocks: any error in the synchronisation of the different satellite clocks will have a direct effect on the range measurement accuracy. These errors are similar for all users able to view a given satellite. | ||
* Signal distortions: any failure affecting the shape of the broadcast signal may have an impact on the propagation time determination in the user receiver. | * Signal distortions: any failure affecting the shape of the broadcast signal may have an impact on the propagation time determination in the user receiver. | ||
Line 36: | Line 30: | ||
* Thermal noise, Interference and User receiver design: the navigation signals have an extremely low power level when they reach the user receiver. | * Thermal noise, Interference and User receiver design: the navigation signals have an extremely low power level when they reach the user receiver. | ||
When computing its position the user receiver combines the range measurements from the different satellites in view. Through this process, the individual errors affecting each | When computing its position the user receiver combines the range measurements from the different satellites in view. Through this process, the individual errors affecting each range measurement are combined which results in an aggregate error in the position domain. The statistical relationship between the average range domain error and the position error is given by a factor that depends on the satellite geometry; this factor is named DOP (Dilution Of Precision). | ||
range measurement are combined which results in an aggregate error in the position domain. The statistical relationship between the average range domain error and the | |||
position error is given by a factor that depends on the satellite geometry; this factor is named DOP (Dilution Of Precision). | |||
==Notes== | ==Notes== | ||
Line 45: | Line 37: | ||
<references/> | <references/> | ||
[[Category:EGNOS]] | [[Category:EGNOS|User]] | ||
[[Category:EGNOS Architecture]] | [[Category:EGNOS Architecture|User]] |
Revision as of 10:22, 11 May 2011
EGNOS | |
---|---|
Title | EGNOS User Segment |
Author(s) | GMV. |
Level | Basic |
Year of Publication | 2011 |
The EGNOS User segment is made of EGNOS receivers that enable their users to accurately compute their positions.
To receive EGNOS signals an EGNOS compatible receiver is required There are many receivers now already on the market from a variety of manufacturers. An EGNOS receiver is like a GPS receiver but with special software inside that allows the receiver to lock onto the code used by the EGNOS satellites and compute the EGNOS corrections to the GPS signals. Apart from this, an EGNOS receiver is just like a GPS receiver. This means that it can pick up GPS signals as well. An EGNOS receiver is the same size as a GPS receiver and uses the same type of antenna.[1]
EGNOS User Applications
SISNeT is a technology that combines the powerful capabilities of satellite navigation and the Internet. The highly accurate navigation information that comes from the EGNOS (European Geostationary Navigation Overlay Service) Signal-In-Space (SIS) is now available over the Internet and in real time via SISNeT.[2]
EGNOS Receivers
Errors Affecting User Positioning
A GNSS receiver processes the individual satellite range measurements and combines them to compute an estimate of the user position (latitude, longitude, altitude, and user clock bias) in a given geographical coordinate reference frame.
The estimation of the satellite-to-user range is based on the measurement of the propagation time of the signal and a number of error sources affect the accuracy of these measurements:[3]
- Satellite clocks: any error in the synchronisation of the different satellite clocks will have a direct effect on the range measurement accuracy. These errors are similar for all users able to view a given satellite.
- Signal distortions: any failure affecting the shape of the broadcast signal may have an impact on the propagation time determination in the user receiver.
- Satellite position errors: if the spacecraft orbits are not properly determined by the system’s ground segment, the user will not be able to precisely establish the spacecraft location at any given point in time. This will introduce an error when computing the user position. The size of the error affecting the range measurements depends on the user’s location.
- Ionospheric effects: The Ionosphere is an ionized layer of the atmosphere located a few hundred kilometres above the surface of the Earth. When transiting through the ionosphere, the satellite navigation signals are perturbed, resulting in range measurement errors.
- Tropospheric effects: The troposphere is the lower part of the atmosphere where most weather phenomena take place. The signal propagation in this region will be affected by specific atmospheric conditions (e.g. temperature, humidity…) and will result in range measurement errors.
- Reflections: When propagating towards the user receiver, navigation signals are prone to refl ections from the ground or nearby objects (buildings, vehicles...).
- Thermal noise, Interference and User receiver design: the navigation signals have an extremely low power level when they reach the user receiver.
When computing its position the user receiver combines the range measurements from the different satellites in view. Through this process, the individual errors affecting each range measurement are combined which results in an aggregate error in the position domain. The statistical relationship between the average range domain error and the position error is given by a factor that depends on the satellite geometry; this factor is named DOP (Dilution Of Precision).