If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

Precise Point Positioning: Difference between revisions

From Navipedia
Jump to navigation Jump to search
Line 19: Line 19:
==PPP Algorithm==
==PPP Algorithm==


The [[PPP Fundamentals|PPP algorithm]] uses as input code and phase observations from a dual-frequency receiver, and precise satellite orbits and clocks, in order to calculate precise receiver coordinates and clock. The observations coming from all the satellites are processed together in a filter that solves for the different unknowns, namely the receiver coordinates, the receiver clock, the zenith tropospheric delay and the phase ambiguities.
The [[PPP Fundamentals|PPP algorithm]] is a point positioning technique which makes use of i) precise satellite orbits and clocks instead of the corrections broadcast by the satellites; ii) very accurate additional error models; iii) sequential filtering of dual-frequency pseudorange and carrier-phase observables. By this processing, PPP is able to compute precise receiver coordinates, together with the receiver clock, Zenith Tropospheric path Delay (ZTD) and the initial phase ambiguities to all satellites (as carrier-phase measurements are used as well).


The accuracy of the satellite clocks and orbits is one of the most important factors affecting the quality of the PPP. Another relevant factor that affects the PPP performances is the amount and quality of the observations. Like any GNSS technique, PPP is affected by satellite line-of-sight obstructions. Even the most precise orbit and clock data is useless if the user cannot track particular satellites. When satellite visibility is partially obstructed, a best possible service can be ensured by using the full range of satellites from both the GPS and GLONASS systems, or, in the future, Galileo.
The accuracy of the satellite clocks and orbits is one of the most important factors affecting the quality of the PPP. Another relevant factor that affects the PPP performances is the amount and quality of the observations. Like any GNSS technique, PPP is affected by satellite line-of-sight obstructions. Even the most precise orbit and clock data is useless if the user cannot track particular satellites. When satellite visibility is partially obstructed, a best possible service can be ensured by using the full range of satellites from both the GPS and GLONASS systems, or, in the future, Galileo.

Revision as of 11:17, 11 June 2020


FundamentalsFundamentals
Title Precise Point Positioning
Edited by GMV
Level Basic
Year of Publication 2011
Logo GMV.png

Precise point positioning (PPP) stands out as an optimal approach for providing standalone static and kinematic geodetic point positioning solutions using all the available GNSS constellations. Combining precise satellite orbits and clocks with un-differenced, dual-frequency, pseudo-range and carrier-phase observables, PPP is able to provide position solutions at centimeter-level precision. PPP offers an attractive alternative to Differential Global Navigation Satellite System (DGNSS), with the advantage that it does not require simultaneous observations from multiple stations, i.e., it only needs a single geodetic receiver. In practice, PPP makes use of a network of reference stations in order to compute precise estimates of GNSS satellites orbits and clock errors. Nevertheless, it requires fewer reference stations globally distributed as compared with classic differential approaches (e.g. Real Time Kinematics, RTK), and one set of precise orbit and clock data (computed by a processing center) is valid for all users everywhere. Furthermore, as the precise orbits and clocks are calculated from a global network of reference stations, the same set of satellites is simultaneously observed by multiple stations, which enables PPP to provide position solutions rather robust to individual reference station failures.

PPP Introduction

Precise Point Positioning (PPP) provides a global precise positioning service by leveraging precise reference satellite orbit and clock products in real-time using widespread networks of GNSS reference stations distributed worldwide[1][2][3]. ] Although being typically a global positioning service, PPP service might be regional too.

PPP is able to provide position solutions at centimeter to decimeter level by combining precise satellite positions and clocks with un-differenced, dual-frequency (to remove the first order effect of the ionosphere), pseudorange and carrier-phase GNSS observables. In static mode, PPP can provide even sub-centimeter positioning precision. PPP differs from traditional Double-Difference (DD) relative baseline positioning (e.g., Real Time Kinematics, RTK) in the sense that it does not require access to simultaneous observations from one or more close reference stations accurately-surveyed[4] ]. As a result, PPP provides absolute positioning information, contrarily to RTK, which instead provides relative positioning information with respect to a reference station. PPP just requires precise orbit and clock data, which are computed by a processing center with measurements coming from reference stations belonging to a relatively sparse network (i.e., thousands of km apart would suffice). This makes PPP a very attractive alternative to RTK for those areas where RTK coverage is limited or not available.

One of the main drawbacks of PPP techniques is that they require a fairly long convergence time to achieve the utmost performance. Standard PPP techniques generally take many tens of minutes to initially converge. However, many novel PPP techniques recently proposed are capable to significantly reduce this initial convergence time (e.g., down to approx. 10-15 minutes) or, in case external precise ionospheric information is available, even to eliminate it[5].

PPP Algorithm

The PPP algorithm is a point positioning technique which makes use of i) precise satellite orbits and clocks instead of the corrections broadcast by the satellites; ii) very accurate additional error models; iii) sequential filtering of dual-frequency pseudorange and carrier-phase observables. By this processing, PPP is able to compute precise receiver coordinates, together with the receiver clock, Zenith Tropospheric path Delay (ZTD) and the initial phase ambiguities to all satellites (as carrier-phase measurements are used as well).

The accuracy of the satellite clocks and orbits is one of the most important factors affecting the quality of the PPP. Another relevant factor that affects the PPP performances is the amount and quality of the observations. Like any GNSS technique, PPP is affected by satellite line-of-sight obstructions. Even the most precise orbit and clock data is useless if the user cannot track particular satellites. When satellite visibility is partially obstructed, a best possible service can be ensured by using the full range of satellites from both the GPS and GLONASS systems, or, in the future, Galileo.

Benefits and Prospects

As it has been mentioned before, PPP technique offers significant benefits compared to differential precise positioning techniques:

  • PPP involves only a single GPS receiver and, therefore, no reference stations are needed in the vicinity of the user.
  • PPP can be regarded as a global position approach because its position solutions referred to a global reference frame. As a result, PPP provides much greater positioning consistency than the differential approach in which position solutions are relative to the local base station or stations.
  • PPP reduces labor and equipment cost and simplifies operational logistics to field work since it eliminates the dependency on base station(s).
  • PPP can support other applications beyond positioning. For example, as PPP technique estimates receiver clock and tropospheric effect parameters in addition to position coordinate parameter, it provides another way for precise time transfer and troposphere estimation using a single GPS receiver.

With respect to challenges, PPP faces several in order to achieve its full potential to applications. Between these challenges:[6]

  • A long initialization time, this is a drawback for real-time applications.
  • Integer ambiguity resolution, to have a more precise solution.

Notes


References

  1. ^ Zumberge, J. F. et al, Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of geophysical research: solid earth, 1997
  2. ^ Kouba, Jan (et al.), Precise Point Positioning, Chapter 25, Handbook of Global Navigation Satellite Systems, 2017
  3. ^ International GNSS Service
  4. ^ The Nasa Global Differential GPS System
  5. ^ GPSworld: Clarifying the ambiguities, 2016
  6. ^ GNSS Solutions:Precise Point Positioning and Its Challenges, Inside GNSS, November 2006