If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

Emergency Services: Difference between revisions

From Navipedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Article Infobox2
{{Article Infobox2
|Category=Applications
|Category=Applications
|Title={{PAGENAME}}
|Editors=GMV
|Authors=GMV
|Level=Basic
|Level=Basic
|YearOfPublication=2011
|YearOfPublication=2011
|Logo=GMV
|Logo=GMV
}}
}}
In automobile crashes, one of the most important factors in saving lives is a prompt response from emergency  medical services. By improving information transfer between the trauma care physician and emergency medical service personnel they result in faster, more appropriate care, thus saving lives and reducing disabilities resulting from crashes. Traffic incident and emergency management is the planned and coordinated process to detect, respond to and remove traffic incidents and restore traffic capacity as safely and quickly as possible.


In automobile crashes, one of the most important factors in saving lives is a prompt response from emergency  medical services. By improving information transfer between the trauma care physician and emergency medical service personnel they result in faster, more appropriate care, thus saving lives and reducing disabilities resulting from crashes. Traffic incident and emergency management is the planned and coordinated program process to detect, respond to and remove traffic incidents and restore traffic capacity as safely and quickly as possible
The use of GNSS for emergency services and incident management can make the response to emergency situations much faster and efficient saving lives. The precise location of vehicle can be sent to rescue authorities that can use a [[Fleet Management and Vehicle Tracking|fleet management]] system to assign emergency and rescue vehicle the most adequate vehicle to respond to the incident.
 
The use of GNSS for emergency services and incident management can make the response to emergency situations much faster and efficient saving lives. The precise location of vehicle can be sent to rescue authorities and can use the emergency and rescue vehicle [[Work in Progress:Fleet Management and Vehicle Tracking|fleet management]] system to assign the most adequate vehicle to respond to the incident.


== Application Architecture ==
== Application Architecture ==


GNSS emergency services results on the combination of the existing emergency services with GNSS positioning technologies. In technical terms such systems rely on device similar to a [[Work in Progress:Vehicle Tracker|vehicle tracker]] (a GNSS receiver with cellular communications capabilities) with some kind of human-machine interface that would allow to trigger emergency or distress calls or messages. These devices can be specific for emergency services or can take advantage and be integrated with of other GNSS systems on the vehicle such [[Road Navigation|navigation systems]], [[Work in Progress:Fleet Management and Vehicle Tracking|fleet management systems]] or [[Tolling|tolling systems]]. Also these systems can be integrated with vehicle sensors such as crash sensors, roll-over sensors or airbag activation sensors. The data coming from these sensors can be used to trigger automatically emergency assistance requests.
[[File:September 26, 2007 accident, highway 9, CT, flipped truck.jpg|right|thumb|500px|Accident with rollover]]
GNSS emergency services result on the combination of the existing emergency services with GNSS positioning technologies. In technical terms such systems rely on devices similar to a [[Vehicle Trackers|vehicle tracker]] (a GNSS receiver with cellular communications capabilities) with some kind of human-machine interface that would allow to trigger distress calls or messages. These devices can be specific for emergency services or can be integrated with other GNSS systems on the vehicle such as [[Road Navigation|navigation systems]], [[Fleet Management and Vehicle Tracking|fleet management systems]] or [[Tolling|tolling systems]]. Also these systems can be integrated with vehicle sensors such as crash sensors, roll-over sensors or airbag activation sensors. The data coming from these sensors can be used to trigger automatically emergency assistance requests.


The human-machine interface can be as simple a distress button on the dashboard or can be integrated in the interface of other in-car systems. The emergency call system is usually integrated with an hands-free cellular communication system or even a video call system to allow the communication between the occupants of the vehicle and the emergency services providers.
The human-machine interface can be as simple a distress button on the dashboard or can be integrated in the interface of other in-car systems. The emergency call system is usually integrated with an hands-free cellular communication system or even a video call system to allow the communication between the occupants of the vehicle and the emergency services providers.


GNSS emergency services can operate in two modes:  
GNSS emergency services can operate in two modes:  
* '''Manual''' - The emergency call is triggered by the occupants of the vehicle in distress or by witnesses by pressing a distress button or using other user interface in the vehicle.
* '''Manual''' - The emergency call is triggered by the occupants of the vehicle in distress or by witnesses in nearby cars by pressing a distress button or using other user interface in the vehicle.
* '''Automatic''' - The emergency call is triggered automatically if a severe impact in an accident is detected by the sensors on the car.
* '''Automatic''' - The emergency call is triggered automatically if a severe impact, roll over or spin is detected by sensors or if the airbag is triggered on the car.


Having received the emergency call, the emergency responder will try to assess the severity of the emergency using the communication with the person that triggered the request, car sensor information provided by the system and other available means (such as road side cameras). Having the information about the position of the vehicle and an assessment of the severity of the emergency, the emergency responder will use the emergency and rescue vehicles fleet management system to assign the most adequate vehicle to respond to the emergency.  
Having received the emergency call, the emergency responder will try to assess the severity of the emergency by communication with the person that triggered the request, by analyzing the car sensor information sent with the distress call and other available means (such as road side cameras). Having the information about the position of the vehicle and the severity assessment of the emergency, the emergency responder will use the emergency and rescue vehicles [[Fleet Management and Vehicle Tracking|fleet management]] system to assign the most adequate vehicle to respond to the emergency.  


The position of the distress vehicle can be sent automatically to the response vehicle using the fleet management system and provided to the response vehicle navigation system. The navigation system of the response vehicle can use dynamic traffic information to determine the fastest route and provide route and position information to a traffic control center allowing traffic lights to be controlled to speed the arrival of the emergency vehicle enabling it to reach its destination much faster<ref>[http://www.galileoic.org/la/files/Road.pdf Galileo Application Sheet - Road Applications], ESA and European Commission, October 2002</ref>. The integration with traffic management and traffic information systems
The position of the distress vehicle can be sent automatically to the response vehicle using the [[Fleet Management and Vehicle Tracking|fleet management]] system and provided to the response vehicle [[Road Navigation|navigation system]]. The [[Road Navigation|navigation system]] of the response vehicle can use dynamic traffic information to determine the fastest route. The route and position information of the emergency vehicle can be provide to a traffic control center in order for the traffic lights to be controlled to speed the arrival of the emergency vehicle to its destination<ref> Galileo Application Sheet - Road Applications, ESA and European Commission, October 2002</ref>.
 
These in-vehicle emergency call systems allow the emergency services to remotely locate vehicles in a difficult situation, resulting from a collision or other distress situations<ref name="Market_Report">[http://www.gsa.europa.eu/files/dmfile/GSAGNSSMarketreportIssue1.pdf GSA GNSS Market Report – Issue 1], October 2010.</ref>.
 
Galileo can increase the security of taxi and bus drivers. Simply pressing a distress button in the event of an attack will immediately alert the police. The Galileo receiver will indicate the position of the vehicle<ref>[http://www.galileoic.org/la/files/Public%20Transport.pdf Galileo Application Sheet - Public Transport Applications], ESA and European Commission, October 2002</ref>.


== Application Characterization ==
== Application Characterization ==


These in-vehicle emergency call systems allow the emergency services to remotely locate vehicles in a difficult situation, resulting from a collision or other distress situations<ref name="Market_Report">[[GNSS Market Report#Previous Report Issues|GSA GNSS Market Report – Issue 1]], October 2010.</ref>. Also these can have wider use than emergencies due to car accident and can be used in other distress situation such as car jacking or car theft. These systems can be used to increase the security of taxi and bus drivers. Simply pressing a distress button in the event of an attack will immediately alert the police indicating the position of the vehicle<ref>[https://ec.europa.eu/commission/index_en Galileo Application Sheet - Public Transport Applications], ESA and European Commission, October 2002</ref>.


== Application Examples ==


== Application Examples ==
The generalization and standardization of location-enabled emergency services including in-car emergency services has been promoted by the authorities. The main initiatives in this area are:
* '''[[Wikipedia:Enhanced 9-1-1|Enhanced 911]]''' - Enhanced 911 is the modernization initiative of North America's 911 emergency number where telecommunication operators must provide the caller location to the safety authorities. For wired phones this is done using databases. For wireless phones this is done either using cellular network localization or GNSS (using GNSS enabled phones).
* '''[[Wikipedia:112 (emergency telephone number)#E112|E112]]''' - E112 is a location-enhanced version of [[Wikipedia:112 (emergency telephone number)|112]] (the European emergency number). The EU Directive E112 (2003) requires mobile phone networks to provide emergency services with whatever information they have about the location where a mobile call was made. This directive is based on Enhanced 911.
* '''[[Wikipedia:eCall|eCall]]''' - European Commission (EC) project intended to bring rapid assistance to vehicle occupants involved in a collision anywhere in the European Union. Along with the emergency call a Minimum Set of Data (MSD) is sent to the safety authorities that contains information about the vehicle and its location. The location information is obtained by GNSS. The objective of the EC is that every car sold in Europe is fitted in factory with such system.


Several car manufacturers have put in place proprietary emergency and assistance subscription services. Normally the emergency service is integrated with the car's navigation and entertainment system and besides emergency services provides road assistance services and car theft recuperation services. Some of these services are:
[[File:BMW Assist Button.jpg|right|thumb|400px|BMW Assist Button]]
*'''[[Wikipedia:OnStar|General Motor OnStar]]''' - Subscription fee service available in the United States, Canada and China. Provides communications, emergency services, in-vehicle security, hands free calling, turn-by-turn navigation and remote diagnostics systems.
*'''[[Wikipedia:BMW Assist|BMW Assist]]''' - Subscription fee service. Provides turn-by-turn directions, remote (un)locking, vehicle diagnostics, airbag deployment notification, theft recovery and towing or flat tire repair services.
*'''[[Wikipedia:Ford Sync|Ford Sync]]''' - Factory-installed in-vehicle communications and entertainment system. Allows users to make hands-free telephone calls, control music and other functions using voice commands. [[Wikipedia:Microsoft Auto|Windows Embedded Automotive]] applications can be run on system including navigation and assistance applications. One of the supported applications is 911 Assist that places a direct call to the emergency operator in the event of a serious accident with air bag deployment.
*'''[[Wikipedia:Safety Connect|Toyota Safety Connect]]''' - Subscription fee service available in the United States. Provides communications, roadside assistance, car safety, remote diagnostics.
*'''[[Wikipedia:G-Book|Toyota G-Book]]''' - Subscription fee service available in Japan. Provides several service packages such as Safety and Security (requesting a tow truck and vehicle location services), Live Navigation (turn-by-turn directions given by operator), Information Service (news, weather forecasts and stock market information), Communication Service (e-mail and messaging), E-commerce (merchandise purchase) and a live operator services for various issues.


== Notes ==
== Notes ==

Latest revision as of 14:28, 16 September 2018


ApplicationsApplications
Title Emergency Services
Edited by GMV
Level Basic
Year of Publication 2011
Logo GMV.png

In automobile crashes, one of the most important factors in saving lives is a prompt response from emergency medical services. By improving information transfer between the trauma care physician and emergency medical service personnel they result in faster, more appropriate care, thus saving lives and reducing disabilities resulting from crashes. Traffic incident and emergency management is the planned and coordinated process to detect, respond to and remove traffic incidents and restore traffic capacity as safely and quickly as possible.

The use of GNSS for emergency services and incident management can make the response to emergency situations much faster and efficient saving lives. The precise location of vehicle can be sent to rescue authorities that can use a fleet management system to assign emergency and rescue vehicle the most adequate vehicle to respond to the incident.

Application Architecture

Accident with rollover

GNSS emergency services result on the combination of the existing emergency services with GNSS positioning technologies. In technical terms such systems rely on devices similar to a vehicle tracker (a GNSS receiver with cellular communications capabilities) with some kind of human-machine interface that would allow to trigger distress calls or messages. These devices can be specific for emergency services or can be integrated with other GNSS systems on the vehicle such as navigation systems, fleet management systems or tolling systems. Also these systems can be integrated with vehicle sensors such as crash sensors, roll-over sensors or airbag activation sensors. The data coming from these sensors can be used to trigger automatically emergency assistance requests.

The human-machine interface can be as simple a distress button on the dashboard or can be integrated in the interface of other in-car systems. The emergency call system is usually integrated with an hands-free cellular communication system or even a video call system to allow the communication between the occupants of the vehicle and the emergency services providers.

GNSS emergency services can operate in two modes:

  • Manual - The emergency call is triggered by the occupants of the vehicle in distress or by witnesses in nearby cars by pressing a distress button or using other user interface in the vehicle.
  • Automatic - The emergency call is triggered automatically if a severe impact, roll over or spin is detected by sensors or if the airbag is triggered on the car.

Having received the emergency call, the emergency responder will try to assess the severity of the emergency by communication with the person that triggered the request, by analyzing the car sensor information sent with the distress call and other available means (such as road side cameras). Having the information about the position of the vehicle and the severity assessment of the emergency, the emergency responder will use the emergency and rescue vehicles fleet management system to assign the most adequate vehicle to respond to the emergency.

The position of the distress vehicle can be sent automatically to the response vehicle using the fleet management system and provided to the response vehicle navigation system. The navigation system of the response vehicle can use dynamic traffic information to determine the fastest route. The route and position information of the emergency vehicle can be provide to a traffic control center in order for the traffic lights to be controlled to speed the arrival of the emergency vehicle to its destination[1].

Application Characterization

These in-vehicle emergency call systems allow the emergency services to remotely locate vehicles in a difficult situation, resulting from a collision or other distress situations[2]. Also these can have wider use than emergencies due to car accident and can be used in other distress situation such as car jacking or car theft. These systems can be used to increase the security of taxi and bus drivers. Simply pressing a distress button in the event of an attack will immediately alert the police indicating the position of the vehicle[3].

Application Examples

The generalization and standardization of location-enabled emergency services including in-car emergency services has been promoted by the authorities. The main initiatives in this area are:

  • Enhanced 911 - Enhanced 911 is the modernization initiative of North America's 911 emergency number where telecommunication operators must provide the caller location to the safety authorities. For wired phones this is done using databases. For wireless phones this is done either using cellular network localization or GNSS (using GNSS enabled phones).
  • E112 - E112 is a location-enhanced version of 112 (the European emergency number). The EU Directive E112 (2003) requires mobile phone networks to provide emergency services with whatever information they have about the location where a mobile call was made. This directive is based on Enhanced 911.
  • eCall - European Commission (EC) project intended to bring rapid assistance to vehicle occupants involved in a collision anywhere in the European Union. Along with the emergency call a Minimum Set of Data (MSD) is sent to the safety authorities that contains information about the vehicle and its location. The location information is obtained by GNSS. The objective of the EC is that every car sold in Europe is fitted in factory with such system.

Several car manufacturers have put in place proprietary emergency and assistance subscription services. Normally the emergency service is integrated with the car's navigation and entertainment system and besides emergency services provides road assistance services and car theft recuperation services. Some of these services are:

BMW Assist Button
  • General Motor OnStar - Subscription fee service available in the United States, Canada and China. Provides communications, emergency services, in-vehicle security, hands free calling, turn-by-turn navigation and remote diagnostics systems.
  • BMW Assist - Subscription fee service. Provides turn-by-turn directions, remote (un)locking, vehicle diagnostics, airbag deployment notification, theft recovery and towing or flat tire repair services.
  • Ford Sync - Factory-installed in-vehicle communications and entertainment system. Allows users to make hands-free telephone calls, control music and other functions using voice commands. Windows Embedded Automotive applications can be run on system including navigation and assistance applications. One of the supported applications is 911 Assist that places a direct call to the emergency operator in the event of a serious accident with air bag deployment.
  • Toyota Safety Connect - Subscription fee service available in the United States. Provides communications, roadside assistance, car safety, remote diagnostics.
  • Toyota G-Book - Subscription fee service available in Japan. Provides several service packages such as Safety and Security (requesting a tow truck and vehicle location services), Live Navigation (turn-by-turn directions given by operator), Information Service (news, weather forecasts and stock market information), Communication Service (e-mail and messaging), E-commerce (merchandise purchase) and a live operator services for various issues.

Notes


References

  1. ^ Galileo Application Sheet - Road Applications, ESA and European Commission, October 2002
  2. ^ GSA GNSS Market Report – Issue 1, October 2010.
  3. ^ Galileo Application Sheet - Public Transport Applications, ESA and European Commission, October 2002