If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

Time References in GNSS: Difference between revisions

From Navipedia
Jump to navigation Jump to search
m (rewritten first paragraph.)
Line 15: Line 15:
==GLONASS Time (GLONASST)==
==GLONASS Time (GLONASST)==
GLONASS Time (GLONASST) is generated by the GLONASS Central Synchroniser and the difference between the UTC(SU) and GLONASST should not exceed 1 millisecond plus three hours<ref group="footnotes">The difference between Moscow Time and Greenwich Mean Time (GMT).</ref> (i.e.,<math>GLONASST=UTC(SU)+3^h-\tau</math>, where <math>|\tau|< 1
GLONASS Time (GLONASST) is generated by the GLONASS Central Synchroniser and the difference between the UTC(SU) and GLONASST should not exceed 1 millisecond plus three hours<ref group="footnotes">The difference between Moscow Time and Greenwich Mean Time (GMT).</ref> (i.e.,<math>GLONASST=UTC(SU)+3^h-\tau</math>, where <math>|\tau|< 1
milisec.</math>), but <math>\tau</math> is typically better than 1 microsecond. Note:  Unlike GPS, Galileo or Compass, GLONASS time scale implements leap seconds, like UTC.<ref>[http://www.spacecorp.ru/upload/iblock/1c4/cgs-aaixymyt%205.1%20ENG%20v%202014.02.18w.pdf GLONASS Interface Control Document, Navigation radiosignal In bands L1, L2 (ICD L1, L2 GLONASS)], Russian Institute of Space Device Engineering, Edition 5.1, 2008</ref>
milisec.</math>), but <math>\tau</math> is typically better than 1 microsecond. Note:  Unlike GPS, Galileo or BeiDou, GLONASS time scale implements leap seconds, like UTC.<ref>[http://www.spacecorp.ru/upload/iblock/1c4/cgs-aaixymyt%205.1%20ENG%20v%202014.02.18w.pdf GLONASS Interface Control Document, Navigation radiosignal In bands L1, L2 (ICD L1, L2 GLONASS)], Russian Institute of Space Device Engineering, Edition 5.1, 2008</ref>


==Galileo System Time (GST)==  
==Galileo System Time (GST)==  

Revision as of 17:39, 26 May 2014


FundamentalsFundamentals
Title Time References in GNSS
Author(s) J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
Level Basic
Year of Publication 2011


GNSS Systems strongly rely on measuring the time of arrival of radio signals propagation. Thus, each GNSS System has its own time reference from which all elements of the Space, Control and User segments are time synchronized, as well most of the GNSS-based applications. The most relevant GNSS time references are briefly described below.

GPS Time (GPST)

GPS Time (GPST) is a continuous time scale (no leap seconds) defined by the GPS Control segment on the basis of a set of atomic clocks at the Monitor Stations and onboard the satellites. It starts at 0h UTC (midnight) of January 5th to 6th 1980 (6.d0). At that epoch, the difference TAI−UTC was 19 seconds, thence GPS−UTC=n − 19s. GPS time is synchronised with the UTC(USNO) at 1 microsecond level (modulo one second), but actually is kept within 25 ns.[1]

GLONASS Time (GLONASST)

GLONASS Time (GLONASST) is generated by the GLONASS Central Synchroniser and the difference between the UTC(SU) and GLONASST should not exceed 1 millisecond plus three hours[footnotes 1] (i.e.,[math]\displaystyle{ GLONASST=UTC(SU)+3^h-\tau }[/math], where [math]\displaystyle{ |\tau|\lt 1 milisec. }[/math]), but [math]\displaystyle{ \tau }[/math] is typically better than 1 microsecond. Note: Unlike GPS, Galileo or BeiDou, GLONASS time scale implements leap seconds, like UTC.[2]

Galileo System Time (GST)

Galileo System Time (GST) is a continuous time scale maintained by the Galileo Central Segment and synchronised with TAI with a nominal offset below 50 ns. The GST start epoch is 0h UTC on Sunday, 22 August 1999 (midnight between 21 and 22 August).[3]

BeiDou Time (BDT)

BeiDou Time (BDT) is a continuous time scale starting at 0h UTC on January 1st, 2006 and is synchronised with UTC within 100 ns< (modulo one second).[4]

Notes

  1. ^ The difference between Moscow Time and Greenwich Mean Time (GMT).

References