If you wish to contribute or participate in the discussions about articles you are invited to contact the Editor

APPROVED
Vicente.Navarro approved this page 14 July 2025
14 July 2025

Geometric Range Modelling: Difference between revisions

From Navipedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 9: Line 9:




:: <math>\rho_{rcv}^{sat}=\left\| {\mathbf r}_{rcv}-{\mathbf r}^{sat}\right \|=\sqrt{(x_{rcv}-x^{sat})^2+(y_{rcv}-y^{sat})^2+(z_{rcv}-z^{sat})^2} \qquad \mbox{(1)}</math>
:: <math>\rho_{rcv}^{sat}=\left\|{\mathbf r}^{sat}-{\mathbf r}_{rcv}\right \|=\sqrt{(x^{sat}-x_{rcv})^2+(y^{sat}-y_{rcv})^2+(z^{sat}-z_{rcv})^2} \qquad \mbox{(1)}</math>





Latest revision as of 11:41, 13 January 2013


FundamentalsFundamentals
Title Geometric Range Modelling
Author(s) J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of Catalonia, Spain.
Level Basic
Year of Publication 2011

The geometric range [math]\displaystyle{ \rho_{rcv}^{sat} }[/math] is the Euclidean distance between the satellite and receiver coordinates at the transmission and reception time, respectively:


[math]\displaystyle{ \rho_{rcv}^{sat}=\left\|{\mathbf r}^{sat}-{\mathbf r}_{rcv}\right \|=\sqrt{(x^{sat}-x_{rcv})^2+(y^{sat}-y_{rcv})^2+(z^{sat}-z_{rcv})^2} \qquad \mbox{(1)} }[/math]


Related Articles

The algorithms to compute the transmission time from the measurement time, the satellite coordinates as well as the geometric-range pre-modelling are provided in the following entries: